Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Mar 19;14(13):9184-9199.
doi: 10.1039/d4ra00487f. eCollection 2024 Mar 14.

Recent investigations into deborylative (thio-/seleno-) cyanation of aryl boronic acids

Affiliations
Review

Recent investigations into deborylative (thio-/seleno-) cyanation of aryl boronic acids

Farnaz Behmagham et al. RSC Adv. .

Abstract

In this review, we intend to summarize the most important discoveries in the deborylative (thio-/seleno-) cyanation of aryl boronic acids from 2006 to the end of 2023. Thus, the review is divided into three parts. The first section focuses exclusively on cyanation of aryl boronic acids into aryl nitriles. The second section covers the available literature on the synthesis of aryl thiocyanates through thiocyanation of respective aryl boronic acids. The third will discuss selenocyanation of aryl boronic acids into aryl selenocyanates.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Selected examples of biologically active aryl (thio-/seleno-)cyanates.
Fig. 1
Fig. 1. Deborylative (thio-/seleno-)cyanation of aryl boronic acids.
Scheme 2
Scheme 2. (a) Pd-catalyzed cyanation of (hetero)aryl boronic acids 1 with benzyl thiocyanate; (b) plausible mechanism for the formation of(hetero)aryl nitriles 3.
Scheme 3
Scheme 3. (a) Pd-catalyzed cyanation of (hetero)aryl boronic acids 4 with K4[Fe(CN)6]; (b) Pd-catalyzed cyanation of (hetero)aryl boronic acids 6 with CuSCN.
Scheme 4
Scheme 4. Raval's synthesis of aryl nitriles 10.
Scheme 5
Scheme 5. Pd-catalyzed [11C]cyanation of aryl boronic acids/esters 12 with [11C]NH4CN.
Scheme 6
Scheme 6. Togni's synthesis of aryl nitriles 16.
Scheme 7
Scheme 7. (a) Rh-catalyzed cyanation of (hetero)aryl boronic acids 17 with N-cyano-4-methyl-N-phenylbenzenesulfonamide 18; (b) proposed mechanism for the formation of (hetero)aryl nitrile 19.
Scheme 8
Scheme 8. Cyanation of aryl boronic acids 20 with DMMN catalyzed by [Rh(Cl)(cod)]2.
Scheme 9
Scheme 9. Hartwig's synthesis of (hetero)aryl nitriles 24.
Scheme 10
Scheme 10. Cu(i)-mediated cyanation of aryl boronic acids 25 developed by Cheng.
Scheme 11
Scheme 11. (a) Cu-mediated cyanation of (hetero)aryl boronic acids 27 using NH4I and DMF; (b) proposed mechanistic pathway for the formation of (hetero)aryl nitriles 28.
Scheme 12
Scheme 12. Cu-catalyzed cyanation of aryl boronic acids 29 with DDQ.
Scheme 13
Scheme 13. (a) Cu-mediated cyanation of (hetero)aryl boronic acids 32 using benzyl cyanide 33; (b) mechanistic proposal for the formation of (hetero)aryl nitriles 34.
Scheme 14
Scheme 14. Shen's synthesis of (hetero)aromatic nitriles 36.
Scheme 15
Scheme 15. Cu-catalyzed cyanation of (hetero)aryl boroxines 37 with ICN.
Scheme 16
Scheme 16. Cu-catalyzed [11C]cyanation of aryl boronic acids 39 with [11C]CsCN developed by Liang.
Scheme 17
Scheme 17. (a) Mn-mediated cyanation of (hetero)aryl boronic acids 41 with trityl isocyanide 42; (b) proposed mechanism for the formation of (hetero) aryl nitrile 43.
Scheme 18
Scheme 18. (a) Cu-catalyzed oxidative coupling between aryl boronic acids 44 and KSCN; (b) Cu-catalyzed oxidative thiocyanation of aryl boronic acids 46 with TMSNCS.
Scheme 19
Scheme 19. Plausible reaction pathway for the formation of aryl thiocyanates 47.
Scheme 20
Scheme 20. Electrochemical ipso-thiocyanation of (hetero)aryl boronic acids 48 with NH4SCN.
Scheme 21
Scheme 21. Metal-free electrochemical thiocyanation of (hetero)aryl boronic acids 50 with TMSNCS.
Scheme 22
Scheme 22. (a) Redon-Vanelle's synthesis of (hetero)aryl selenocyanates 54; (b) plausible mechanism for the formation of (hetero)aryl selenocyanates 54.
Scheme 23
Scheme 23. (a) Electrochemical deborylative selenocyanation of (hetero)aryl boronic acids 55 with KSeCN; (b) proposed mechanism for the formation of aryl selenocyanates 56.
Scheme 24
Scheme 24. Catalyst-free three-component reaction of aryl boronic acids 57, Se powder, and TMSCN.

References

    1. Dubrovskiy A. V., Kesharwani T., Markina N. A., Pletnev A. A., Raminelli C., Yao T., Zeni G., Zhang L., Zhang X., Rozhkov R. and Worlikar S. A., Comprehensive Organic Transformations, A Guide to Functional Group Preparations, Wiley-VCH, New York, 2018
    2. Majedi S. Sreerama L. Vessally E. Behmagham F. J. Chem. Lett. 2020;1:25–31.
    3. Mahdi A. K. Bahir H. Adhab A. H. Ibrahim A. S. Chem. Rev. Lett. 2023;6:213–222.
    1. Fleming F. F. Yao L. Ravikumar P. C. Funk L. Shook B. C. J. Med. Chem. 2010;53:7902–7917. - PMC - PubMed
    1. Ohshima T. Komyoji T. Mitani S. Matsuo N. Nakajima T. J. Pest Sci. 2004;29:147–152.
    2. Bertelsen J. R. De Neergaard E. Smedegaard-Petersen V. J. P. P. Plant Pathol. 2001;50:190–205.
    1. Vaughn K. C. Hoffman J. C. Hahn M. G. Staehelin L. A. Protoplasma. 1996;194:117–132.
    2. Corbett J. L. Askew S. D. Thomas W. E. Wilcut J. W. Weed Technol. 2004;18:443–453.
    1. Astbury C. Conway L. K. Gillespie C. Hodge K. Innes E. Kennedy A. R. Dyes Pigm. 2013;97:100–104.
    2. Zhou X. Zheng P. Wang L. Liu X. Polym. 2018;11:32.