Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 3;146(13):9134-9141.
doi: 10.1021/jacs.3c14329. Epub 2024 Mar 20.

Facial Selectivity in Mechanical Bond Formation: Axially Chiral Enantiomers and Geometric Isomers from a Simple Prochiral Macrocycle

Affiliations

Facial Selectivity in Mechanical Bond Formation: Axially Chiral Enantiomers and Geometric Isomers from a Simple Prochiral Macrocycle

Peter R Gallagher et al. J Am Chem Soc. .

Abstract

In 1971, Schill recognized that a prochiral macrocycle encircling an oriented axle led to geometric isomerism in rotaxanes. More recently, we identified an overlooked chiral stereogenic unit in rotaxanes that arises when a prochiral macrocycle encircles a prochiral axle. Here, we show that both stereogenic units can be accessed using equivalent strategies, with a single weak stereodifferentiating interaction sufficient for moderate to excellent stereoselectivity. Using this understanding, we demonstrated the first direct enantioselective (70% ee) synthesis of a mechanically axially chiral rotaxane.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Schematic active template retrosyntheses of the mechanical (a) type 1 geometric isomers and (b) axially chiral enantiomers of rotaxanes, highlighting the need to control facial selectivity in the mechanical bond-forming step and the potential for attractive interactions between one face of the macrocycle and one of the half-axles to provide this control.
Scheme 1
Scheme 1. Synthesis of Rotaxanes 4
Reagents and conditions (see also Table 1): (R)-1 (1.1 equiv), 2 (1 equiv), 3 (1.1 equiv), [Cu(CH3CN)4]PF6 (0.96 equiv), iPr2NEt (2 equiv). Determined by SCXRD for 1a(11) and 1d (Figure 1); 1b, c, and e are presumed. Ar = 3,5-di-tBu-C6H3.
Figure 2
Figure 2
SCXRD structure of [(Rma,Rco–c)-4d (major isomer), with key intercomponent interactions highlighted. Colors as in Scheme 1, including the sulfoxide (SO) moiety to highlight the differentiation of the macrocycle faces, except N [dark blue], O [gray], and H [white]. The majority of H was omitted.
Scheme 2
Scheme 2. Proposed AT-CuAAC Mechanism Highlighting Pre-Equilibrium and Kinetic Resolution Steps
Scheme 3
Scheme 3. AT-CuAAC Synthesis of Rotaxane Geometric Isomers of Type 1. (a) Effect of Conditions on the Formation of Rotaxanes 6. (b) Effect of the Half-Axle Structure, on the Stereoselectivity of Mechanical Bond Formation with Macrocycle 2,
Reagents and conditions: 2 (1 equiv), 3 (1.1 equiv), 5 (1.1 equiv), [Cu(CH3CN)4]PF6 (0.96 equiv), iPr2EtN (2 equiv). Synthesized in THF at rt (Scheme 3a, entry 2) unless otherwise stated. Stereochemistry of the major isomer indicated where determined. Determined by 1H NMR analysis of the crude reaction product. Synthesized in EtOH. Synthesized at –40 °C in THF. Ar = 3,5-di-tBu-C6H3.
Figure 3
Figure 3
(a) Solid-state structures of (a) (Zm)-6, (b) (Em)-6, (c) (Zm)-9, and (d) (Em)-11 with key intercomponent interactions highlighted. Colors as in Scheme 1, including the sulfoxide (SO) moiety to emphasize the macrocycle faces, except for O (gray), N (dark blue), and H (white). The majority of H was omitted for clarity.
Scheme 4
Scheme 4. Stereoselective Synthesis of Catenane 14
Reagents and conditions: 13 (2 equiv) was added over the time stated using a syringe pump to 2 (1 equiv), [Cu(CH3CN)4]PF6 (0.97 equiv), iPr2EtN (4 equiv).
Scheme 5
Scheme 5. Two-Step, One-Pot Synthesis of Enantioenriched MAC Rotaxanes 15,
Reagents and conditions: i. 1a (1.1 equiv), 2 (1 equiv), 3 (1.1 equiv), [Cu(CH3CN)]PF6 (0.96 equiv), iPr2EtN (2 equiv), CH2Cl2, 16 h; ii. TFA, CH2Cl2, –78 °C to rt, 6 h. Determined by analytical CSP-HPLC. Ar = 3,5-di-tBu-C6H3.
Figure 4
Figure 4
(a) CSP-HPLC analysis of i. (Rma)-16 (67% ee) produced from (R)-1g; ii. (Rma)-16 (21% ee) produced from (Rma)-15 (21% ee; minor impurity highlighted in gray), and iii. (Sma)-16 (70% ee) produced from (S)-1g. (b) Solid-state structure of rac-16, in which the N–H···O bond between the SO unit and the amide is intermolecular (colors as in Scheme 6, including the sulfoxide (SO) moiety to highlight the differentiation of the macrocycle faces, except N [dark blue], O [gray], and H [white]). The majority of H was omitted for clarity.
Scheme 6
Scheme 6. Direct Synthesis of Enantioenriched Mechanically Axially Chiral Rotaxanes 15 and 16
Reagents and conditions: i. 1 (1.1 equiv), 2 (1 equiv), 3 (1.1 equiv), [Cu(CH3CN)]PF6 (0.96 equiv), iPr2EtN (2 equiv), CH2Cl2, 16 h. Determined by analytical CSP-HPLC. Ar = 3,5-di-tBu-C6H3.

References

    1. Bruns C. J.; Stoddart J. F.. The Nature of the Mechanical Bond: From Molecules to Machines; Wiley, 2016.
    1. Schill G.Catenanes, Rotaxanes and Knots; Academic Press: New York, 1971.
    1. We have recently identified a second form of rotaxane geometric stereochemistry and so have proposed that these are disambiguated by the addition of the type 1/2 label:

    2. Savoini A.; Gallagher P. R.; Saady A.; Goldup S. M. The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers. J. Am. Chem. Soc. 2024, 10.1021/jacs.3c14594. - DOI - PMC - PubMed
    1. The stereochemistry of rotaxanes and catenanes whose macrocycle contains one or more covalent stereogenic centre in the main chain (e.g., as found in cyclodextrin rings) and whose axle/second ring respectively are oriented can be fully described by a covalent stereodescriptor and either a mechanical planar stereolabel or mechanical geometric stereolabel. We prefer the mechanically planar description as, in the case of catenanes, this typically although not always refers to a topological source of stereochemistry, one of the unusual properties of such systems. For selected examples of structures that conform to this class of molecule see:

    2. Armspach D.; Ashton P. R.; Ballardini R.; Balzani V.; Godi A.; Moore C. P.; Prodi L.; Spencer N.; Stoddart J. F.; Tolley M. S.; Wear T. J.; Williams D. J.; Stoddart J. F. Catenated Cyclodextrins. Chem. - Eur. J. 1995, 1 (1), 33–55. 10.1002/chem.19950010109. - DOI
    3. Craig M. R.; Hutchings M. G.; Claridge T. D. W.; Anderson H. L. Rotaxane-encapsulation enhances the stability of an azo dye, in solution and when bonded to cellulose. Angew. Chem., Int. Ed. 2001, 40 (6), 1071–1074. 10.1002/1521-3773(20010316)40:6<1071::AID-ANIE10710>3.0.CO;2-5. - DOI - PubMed
    4. Wang Q. C.; Ma X.; Qu D. H.; Tian H. Unidirectional threading synthesis of isomer-free [2]rotaxanes. Chem. - Eur. J. 2006, 12 (4), 1088–1096. 10.1002/chem.200500415. - DOI - PubMed
    5. Bruns C.J. Exploring and Exploiting the Symmetry-Breaking Effect of Cyclodextrins in Mechanomolecules. Symmetry 2019, 11 (10), 124910.3390/sym11101249. - DOI
    6. Makita Y.; Kihara N.; Takata T. Synthesis and kinetic resolution of directional isomers of [2]rotaxanes bearing a lariat crown ether wheel. Supramol. Chem. 2021, 33 (1–2), 1–7. 10.1080/10610278.2021.1895994. - DOI
    7. Schröder H. V.; Zhang Y.; Link A. J. Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides. Nat. Chem. 2021, 13 (9), 850–857. 10.1038/s41557-021-00770-7. - DOI - PMC - PubMed
    8. Lopez-Leonardo C.; Saura-Sanmartin A.; Marin-Luna M.; Alajarin M.; Martinez-Cuezva A.; Berna J. Ring-to-Thread Chirality Transfer in [2]Rotaxanes for the Synthesis of Enantioenriched Lactams. Angew. Chem., Int. Ed. 2022, 61 (39), e20220990410.1002/anie.202209904. - DOI - PMC - PubMed
    9. Liu E.; Cherraben S.; Boulo L.; Troufflard C.; Hasenknopf B.; Vives G.; Sollogoub M. A molecular information ratchet using a cone-shaped macrocycle. Chem 2023, 9 (5), 1147–1163. 10.1016/j.chempr.2022.12.017. - DOI
    1. Selected examples:

    2. Arduini A.; Ciesa F.; Fragassi M.; Pochini A.; Secchi A. Selective synthesis of two constitutionally isomeric oriented calix[6]arene-based rotaxanes. Angew. Chem., Int. Ed. 2005, 44 (2), 278–281. 10.1002/anie.200461336. - DOI - PubMed
    3. Arduini A.; Bussolati R.; Credi A.; Faimani G.; Garaudee S.; Pochini A.; Secchi A.; Semeraro M.; Silvi S.; Venturi M. Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles. Chem. - Eur. J. 2009, 15 (13), 3230–3242. 10.1002/chem.200801926. - DOI - PubMed
    4. Pierro T.; Gaeta C.; Talotta C.; Casapullo A.; Neri P. Fixed or invertible calixarene-based directional shuttles. Org. Lett. 2011, 13 (10), 2650–2653. 10.1021/ol200753c. - DOI - PubMed
    5. Arduini A.; Bussolati R.; Credi A.; Secchi A.; Silvi S.; Semeraro M.; Venturi M. Toward directionally controlled molecular motions and kinetic intra- and intermolecular self-sorting: threading processes of nonsymmetric wheel and axle components. J. Am. Chem. Soc. 2013, 135 (26), 9924–9930. 10.1021/ja404270c. - DOI - PubMed
    6. Ciao R.; Talotta C.; Gaeta C.; Margarucci L.; Casapullo A.; Neri P. An oriented handcuff rotaxane. Org. Lett. 2013, 15 (22), 5694–5697. 10.1021/ol4026974. - DOI - PubMed
    7. Zanichelli V.; Ragazzon G.; Arduini A.; Credi A.; Franchi P.; Orlandini G.; Venturi M.; Lucarini M.; Secchi A.; Silvi S. Synthesis and Characterization of Constitutionally Isomeric Oriented Calix[6]arene-Based Rotaxanes. Eur. J. Org. Chem. 2016, 2016 (5), 1033–1042. 10.1002/ejoc.201501522. - DOI
    8. La Manna P.; Talotta C.; Gaeta C.; Soriente A.; De Rosa M.; Neri P. Threading of an Inherently Directional Calixarene Wheel with Oriented Ammonium Axles. J. Org. Chem. 2017, 82 (17), 8973–8983. 10.1021/acs.joc.7b01388. - DOI - PubMed
    9. Bazzoni M.; Andreoni L.; Silvi S.; Credi A.; Cera G.; Secchi A.; Arduini A. Selective access to constitutionally identical, orientationally isomeric calix[6]arene-based [3]rotaxanes by an active template approach. Chem. Sci. 2021, 12 (18), 6419–6428. 10.1039/D1SC00279A. - DOI - PMC - PubMed
    10. Cera G.; Arduini A.; Secchi A.; Credi A.; Silvi S. Heteroditopic Calix[6]arene Based Intervowen and Interlocked Molecular Devices. Chem. Rec. 2021, 21 (5), 1161–1181. 10.1002/tcr.202100012. - DOI - PubMed
    11. Andreoni L.; Bonati F. C.; Groppi J.; Balestri D.; Cera G.; Credi A.; Secchi A.; Silvi S. Selective enhancement of organic dye properties through encapsulation in rotaxane orientational isomers. Chem. Commun. 2023, 59 (33), 4970–4973. 10.1039/D3CC01135F. - DOI - PubMed

LinkOut - more resources