Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;13(12):601-614.
doi: 10.1089/wound.2024.0014. Epub 2024 Apr 16.

Nanosheet Promotes Chronic Wound Healing by Localizing Uncultured Stromal Vascular Fraction Cells

Affiliations

Nanosheet Promotes Chronic Wound Healing by Localizing Uncultured Stromal Vascular Fraction Cells

Shimpo Aoki et al. Adv Wound Care (New Rochelle). 2024 Dec.

Abstract

Objective: To develop an efficacious and efficient method for treating chronic wounds using "nanosheet" that improves the survival and localization of transplanted cells without prior seeding to optimally derive the regenerative potentials of uncultured stromal vascular fraction (SVF) cells. Approach: We propose a method whereby the wound is covered by uncultured SVF cells using the nanosheet [porous poly(d, l,-lactic acid)] (PDLLA) films) designed to hold cells in a single-cell layer. A chronic wound model was created on 12-month-old db/db mice by inflecting a full-thickness skin excision on their dorsum and was subsequently given either no treatment or a treatment with SVF cells alone (with Tegaderm dressing), nanosheet alone, or nanosheet with SVF cells. Results: The placement of the nanosheet improved the grafted cell retention rate at day 10 timepoint by 5 folds, and the wound area was the smallest in the wounds treated with SVF cells plus nanosheet in comparison to the other groups. Collagen deposition and epidermal growth factor were significantly higher in the wound beds treated with SVF cells with the nanosheet, offering some mechanistic insights. Innovation: Porous poly(d, l,-lactic acid acid) (PDLLA) films or "nanosheet" printed on the nanoscale (1-100 nm in thickness) as a cellular scaffold for cytotherapy for the treatment of chronic wounds. Conclusion: The use of the nanosheet is an effective way to improve the transplanted SVF cell retention and accelerate the overall wound closure.

Keywords: cell therapy; fat grafting; nanosheet; stromal vascular fraction; wound healing.

PubMed Disclaimer

LinkOut - more resources