Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation
- PMID: 38514919
- PMCID: PMC11095152
- DOI: 10.1002/advs.202308276
Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation
Abstract
Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.
Keywords: bioprinting; bone marrow; eltrombopag; hematopoiesis; megakaryocyte; platelet; silk.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
C.A.D.B., V.K., P‐A.L., I.N.R., and A.B. have submitted a patent application associated with this work. The other authors declare no conflict of interest.
Figures








Similar articles
-
Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting.Int J Biol Macromol. 2024 Jun;269(Pt 2):131720. doi: 10.1016/j.ijbiomac.2024.131720. Epub 2024 Apr 25. Int J Biol Macromol. 2024. PMID: 38677692
-
Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.Acta Biomater. 2015 Jan;11:233-46. doi: 10.1016/j.actbio.2014.09.023. Epub 2014 Sep 19. Acta Biomater. 2015. PMID: 25242654
-
Silk-Based Bioinks for 3D Bioprinting.Adv Healthc Mater. 2018 Apr;7(8):e1701204. doi: 10.1002/adhm.201701204. Epub 2018 Jan 23. Adv Healthc Mater. 2018. PMID: 29359861 Review.
-
3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33684-33696. doi: 10.1021/acsami.9b11644. Epub 2019 Sep 10. ACS Appl Mater Interfaces. 2019. PMID: 31453678
-
Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.Adv Exp Med Biol. 2020;1249:53-66. doi: 10.1007/978-981-15-3258-0_4. Adv Exp Med Biol. 2020. PMID: 32602090 Review.
Cited by
-
Dose-dependent effects of eltrombopag iron chelation on platelet formation.Blood Vessel Thromb Hemost. 2025 May;2(2):None. doi: 10.1016/j.bvth.2025.100060. Blood Vessel Thromb Hemost. 2025. PMID: 40469415 Free PMC article.
-
Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application.Int J Mol Sci. 2024 Sep 26;25(19):10386. doi: 10.3390/ijms251910386. Int J Mol Sci. 2024. PMID: 39408716 Free PMC article. Review.
-
Beyond natural silk: Bioengineered silk fibroin for bone regeneration.Mater Today Bio. 2025 Jun 23;33:102014. doi: 10.1016/j.mtbio.2025.102014. eCollection 2025 Aug. Mater Today Bio. 2025. PMID: 40673129 Free PMC article. Review.
-
Head and Neck 3D Bioprinting-A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications.J Funct Biomater. 2025 Jun 30;16(7):240. doi: 10.3390/jfb16070240. J Funct Biomater. 2025. PMID: 40710454 Free PMC article. Review.
-
In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands.Blood Adv. 2025 May 13;9(9):2192-2206. doi: 10.1182/bloodadvances.2024014905. Blood Adv. 2025. PMID: 39951616 Free PMC article.
References
-
- a) Abbonante V., Di Buduo C. A., Gruppi C., De Maria C., Spedden E., De Acutis A., Staii C., Raspanti M., Vozzi G., Kaplan D. L., Moccia F., Ravid K., Balduini A., Haematologica 2017, 102, 1150; - PMC - PubMed
- b) Chen X., Hughes R., Mullin N., Hawkins R. J., Holen I., Brown N. J., Hobbs J. K., Biophys. J. 2020, 119, 502; - PMC - PubMed
- c) Vining K. H., Marneth A. E., Adu‐Berchie K., Grolman J. M., Tringides C. M., Liu Y., Wong W. J., Pozdnyakova O., Severgnini M., Stafford A., Duda G. N., Hodi F. S., Mullally A., Wucherpfennig K. W., Mooney D. J., Nat. Mater. 2022, 21, 939; - PMC - PubMed
- d) Ivanovska I. L., Shin J. W., Swift J., Discher D. E., Trends Cell Biol. 2015, 25, 523. - PMC - PubMed
-
- a) Adamo L., Naveiras O., Wenzel P. L., McKinney‐Freeman S., Mack P. J., Gracia‐Sancho J., Suchy‐Dicey A., Yoshimoto M., Lensch M. W., Yoder M. C., García‐Cardeña G., Daley G. Q., Nature 2009, 459, 1131; - PMC - PubMed
- b) Zhang P., Zhang C., Li J., Han J., Liu X., Yang H., Stem Cell Res. Ther. 2019, 10, 327; - PMC - PubMed
- c) Li H., Luo Q., Shan W., Cai S., Tie R., Xu Y., Lin Y., Qian P., Huang H., Cell. Mol. Life Sci. 2021, 78, 5881. - PMC - PubMed
-
- a) Abbonante V., Karkempetzaki A. I., Leon C., Krishnan A., Huang N., Di Buduo C. A., Cattaneo D., Ward C. M., Matsuura S., Guinard I., Weber J., De Acutis A., Vozzi G., Iurlo A., Ravid K., Balduini A., Am J. Hematol. 2024, 99, 339; - PMC - PubMed
- b) De Belly H., Paluch E. K., Chalut K. J., Nat. Rev. Mol. Cell Biol. 2022, 23, 465. - PubMed
-
- a) Di Buduo C. A., Aguilar A., Soprano P. M., Bocconi A., Miguel C. P., Mantica G., Balduini A., Haematologica 2021, 106, 947; - PMC - PubMed
- b) Currao M., Malara A., Di Buduo C. A., Abbonante V., Tozzi L., Balduini A., Exp. Cell Res. 2016, 346, 1; - PMC - PubMed
- c) Housler G. J., Miki T., Schmelzer E., Pekor C., Zhang X., Kang L., Voskinarian‐Berse V., Abbot S., Zeilinger K., Gerlach J. C., Tissue Eng Part C Methods 2012, 18, 133; - PMC - PubMed
- d) Aguilar A., Pertuy F., Eckly A., Strassel C., Collin D., Gachet C., Lanza F., Léon C., Blood 2016, 16, 2022; - PubMed
- e) Chou D. B., Frismantas V., Milton Y., David R., Pop‐Damkov P., Ferguson D., MacDonald A., Vargel Bölükbaşı Ö., Joyce C. E., Moreira Teixeira L. S., Rech A., Jiang A., Calamari E., Jalili‐Firoozinezhad S., Furlong B. A., O'Sullivan L. R., Ng C. F., Choe Y., Marquez S., Myers K. C., Weinberg O. K., Hasserjian R. P., Novak R., Levy O., Prantil‐Baun R., Novina C. D., Shimamura A., Ewart L., Ingber D. E., Nat. Biomed. Eng. 2020, 4, 394. - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources