Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 24;15(12):4564-4570.
doi: 10.1039/d3sc06444a. eCollection 2024 Mar 20.

Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification

Affiliations

Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification

Yingtao Wu et al. Chem Sci. .

Abstract

Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Catalytic asymmetric construction of diaryl ether-type atropisomers.
Scheme 2
Scheme 2. Scope for the desymmetrizing esterification of axially pre-chiral dialdehydes.a,b a Unless otherwise noted, all the reactions were carried out with 1 (0.1 mmol), 2 (0.5 mmol), C1 (15 mol%), DQ (1.2 equiv.), Cs2CO3 (1.5 equiv.), and dry DCM (1.0 mL) at 0 °C under a N2 atmosphere for 72 h. b The isolated yield and ee were determined by chiral-phase HPLC analysis. c THF was used instead of DCM. d Reactions were performed at −20 °C. e Reactions were carried out with 2 (3.0 equiv.). f Reactions were carried out with C1 (10 mol%).
Scheme 3
Scheme 3. Large-scale synthesis and follow-up transformations. Reaction conditions: (a) C1 (15 mol%), Cs2CO3 (1.5 equiv.), DQ (1.2 equiv.), dry DCM (0.1 M), −20 °C, N2, 72 h; (b) P-(1-diazo-2-oxopropyl)-dimethylester (1.5 equiv.), K2CO3 (2.0 equiv.), MeOH (1 mL), rt, 12 h; (c) [MePPh3]+Br (1.2 equiv.), nBuLi (1.2 equiv.), dry THF (0.1 M), 0 °C, 30 min, then 3ar, rt, 12 h; (d) NaBH4 (1.0 equiv.), THF/CH3OH = 3 : 1 (0.1 M), 0 °C, 12 h; (e) 4-methoxyaniline (2.0 equiv.), LiHMDS (3.0 equiv.), PhMe (1 mL), rt, 12 h; (f) NaOAc (2.0 equiv.), NH2OH·HCl (2.0 equiv.), MeOH (0.9 mL), H2O (0.1 mL), rt, 3 h; (g) NaClO2 (3.7 equiv.), NaH2PO4 (5.0 equiv.), 2-methylbut-2-ene (13.0 equiv.), tBuOH (0.15 M), rt, overnight; (h) LiOH·H2O (4.0 equiv.), THF and H2O (v/v = 1 : 1), rt, 24 h; (i) diethylamine (1.2 equiv.), EDCl (1.5 equiv.), DMAP (1.5 equiv.), DCM (1.5 mL), rt, 24 h; (j) TsNHNH2 (1.2 equiv.), 2-bromo-3,3,3-trifluoropropene (2.0 equiv.), DBU (3.0 equiv.), PhMe (1 mL), 60 °C, 6 h.
Scheme 4
Scheme 4. Mechanistic studies and proposed mechanism. s = ln[(1 − Conv.)(1 − ees)]/ln[(1 − Conv.)(1 + ees)].

Similar articles

Cited by

References

    1. Selected reviews see:

    2. Pu L. Chem. Rev. 1998;98:2405–2494. doi: 10.1021/cr970463w. - DOI - PubMed
    3. Hembury G. A. Borovkov V. V. Inoue Y. Chem. Rev. 2008;108:1–73. doi: 10.1021/cr050005k. - DOI - PubMed
    1. Smyth J. E. Butler N. M. Keller P. A. Nat. Prod. Rep. 2015;32:1562–1583. doi: 10.1039/C4NP00121D. - DOI - PubMed
    2. Clayden J. Moran W. J. Edwards P. J. LaPlante S. R. Angew. Chem., Int. Ed. 2009;48:6398–6401. doi: 10.1002/anie.200901719. - DOI - PubMed
    1. Chen Y. Yekta S. Yudin A. K. Chem. Rev. 2003;103:3155–3212. doi: 10.1021/cr020025b. - DOI - PubMed
    2. Akiyama T. Chem. Rev. 2007;107:5744–5758. doi: 10.1021/cr068374j. - DOI - PubMed
    3. Tang W. Zhang X. Chem. Rev. 2003;103:3029–3070. doi: 10.1021/cr020049i. - DOI - PubMed
    4. Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014;114:9047–9153. doi: 10.1021/cr5001496. - DOI - PubMed
    1. Cheng J. K. Xiang S. H. Li S. Ye L. Tan B. Chem. Rev. 2021;121:4805–4902. doi: 10.1021/acs.chemrev.0c01306. - DOI - PubMed
    2. Carmona J. A. Rodríguez-Franco C. Fernández R. Hornillos V. Las-saletta J. M. Chem. Soc. Rev. 2021;50:2968–2983. doi: 10.1039/D0CS00870B. - DOI - PubMed
    3. Cheng J. K. Xiang S. H. Tan B. Acc. Chem. Res. 2022;55:2920–2937. doi: 10.1021/acs.accounts.2c00509. - DOI - PubMed
    4. Zhang H. H. Shi F. Acc. Chem. Res. 2022;55:2562–2580. doi: 10.1021/acs.accounts.2c00465. - DOI - PubMed
    5. Qin W. Liu Y. Yan H. Acc. Chem. Res. 2022;55:2780–2795. doi: 10.1021/acs.accounts.2c00486. - DOI - PubMed
    1. Feng J. Li B. He Y. Gu Z. Angew. Chem., Int. Ed. 2016;55:2186–2190. doi: 10.1002/anie.201509571. - DOI - PubMed
    2. Zheng S. C. Wu S. Zhou Q. Chung L. W. Ye L. Tan B. Nat. Commun. 2017;8:15238. doi: 10.1038/ncomms15238. - DOI - PMC - PubMed
    3. Hu P. Hu L. Li X. X. Pan M. Lu G. Li X. Angew. Chem., Int. Ed. 2023;63:e202312923. doi: 10.1002/anie.202312923. - DOI - PubMed