Navigating the landscapes of spatial transcriptomics: How computational methods guide the way
- PMID: 38527900
- DOI: 10.1002/wrna.1839
Navigating the landscapes of spatial transcriptomics: How computational methods guide the way
Abstract
Spatially resolved transcriptomics has been dramatically transforming biological and medical research in various fields. It enables transcriptome profiling at single-cell, multi-cellular, or sub-cellular resolution, while retaining the information of geometric localizations of cells in complex tissues. The coupling of cell spatial information and its molecular characteristics generates a novel multi-modal high-throughput data source, which poses new challenges for the development of analytical methods for data-mining. Spatial transcriptomic data are often highly complex, noisy, and biased, presenting a series of difficulties, many unresolved, for data analysis and generation of biological insights. In addition, to keep pace with the ever-evolving spatial transcriptomic experimental technologies, the existing analytical theories and tools need to be updated and reformed accordingly. In this review, we provide an overview and discussion of the current computational approaches for mining of spatial transcriptomics data. Future directions and perspectives of methodology design are proposed to stimulate further discussions and advances in new analytical models and algorithms. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Computational Analyses of RNA RNA Export and Localization > RNA Localization.
Keywords: artificial intelligence; bioinformatics; data mining; machine learning; spatial transcriptomics.
© 2024 Wiley Periodicals LLC.
Similar articles
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
-
Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research.Adv Sci (Weinh). 2023 Jun;10(16):e2206939. doi: 10.1002/advs.202206939. Epub 2023 Apr 7. Adv Sci (Weinh). 2023. PMID: 37026425 Free PMC article. Review.
-
Spatial transcriptomics data and analytical methods: An updated perspective.Drug Discov Today. 2024 Mar;29(3):103889. doi: 10.1016/j.drudis.2024.103889. Epub 2024 Jan 18. Drug Discov Today. 2024. PMID: 38244672 Review.
-
Computational Approaches and Challenges in Spatial Transcriptomics.Genomics Proteomics Bioinformatics. 2023 Feb;21(1):24-47. doi: 10.1016/j.gpb.2022.10.001. Epub 2022 Oct 14. Genomics Proteomics Bioinformatics. 2023. PMID: 36252814 Free PMC article. Review.
-
Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.Brief Bioinform. 2024 May 23;25(4):bbae257. doi: 10.1093/bib/bbae257. Brief Bioinform. 2024. PMID: 38819253 Free PMC article.
Cited by
-
Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery.Theranostics. 2024 May 11;14(7):2946-2968. doi: 10.7150/thno.95908. eCollection 2024. Theranostics. 2024. PMID: 38773973 Free PMC article. Review.
-
Mapping molecular landscapes in triple-negative breast cancer: insights from spatial transcriptomics.Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 22. doi: 10.1007/s00210-025-04057-3. Online ahead of print. Naunyn Schmiedebergs Arch Pharmacol. 2025. PMID: 40119898 Review.
-
STMiner: Gene-centric spatial transcriptomics for deciphering tumor tissues.Cell Genom. 2025 Feb 12;5(2):100771. doi: 10.1016/j.xgen.2025.100771. Cell Genom. 2025. PMID: 39947134 Free PMC article.
-
Uncovering periodontitis-associated markers through the aggregation of transcriptomics information from diverse sources.Front Genet. 2024 Jun 11;15:1398582. doi: 10.3389/fgene.2024.1398582. eCollection 2024. Front Genet. 2024. PMID: 38919957 Free PMC article.
-
Spatiotemporal transcriptomics reveals key gene regulation for grain yield and quality in wheat.Genome Biol. 2025 Apr 11;26(1):93. doi: 10.1186/s13059-025-03569-8. Genome Biol. 2025. PMID: 40217326 Free PMC article.
References
REFERENCES
-
- Abdelaal, T., Mourragui, S., Mahfouz, A., & Reinders, M. J. T. (2020). SpaGE: Spatial gene enhancement using scRNA‐seq. Nucleic Acids Research, 48(18), e107. https://doi.org/10.1093/nar/gkaa740
-
- Abrar, M. A., Kaykobad, M., Rahman, M. S., & Samee, M. A. H. (2023). NoVaTeST: Identifying genes with location‐dependent noise variance in spatial transcriptomics data. Bioinformatics, 39(6), btad372. https://doi.org/10.1093/bioinformatics/btad372
-
- Achilleas, F., Conor, M. S., Orla, T., Nuno, N., Vinod, K., Sarah, M. W., Megan, H., Clare, C., Viviana, M., Mary, C., Jean, M. F., Ronan, H. M., Suzanne, C., Ling‐Yang, H., Michael, G. M., Sunil, N., Douglas, J. V., & Ursula, F. (2022). Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Annals of the Rheumatic Diseases, 81(9), 1224. https://doi.org/10.1136/annrheumdis-2021-221761
-
- Adossa, N., Khan, S., Rytkönen, K. T., & Elo, L. L. (2021). Computational strategies for single‐cell multi‐omics integration. Computational and Structural Biotechnology Journal, 19, 2588–2596. https://doi.org/10.1016/j.csbj.2021.04.060
-
- Agnieszka, G., & Ewa, S. (2023). ST‐assign: A probabilistic model for joint cell type identification in spatial transcriptomics and single‐cell RNA sequencing data. bioRxiv, 2023.05.29.542559. https://doi.org/10.1101/2023.05.29.542559
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources