Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis
- PMID: 38528186
- PMCID: PMC11310073
- DOI: 10.1038/s41592-024-02235-4
Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis
Abstract
Here we demonstrate that the large language model GPT-4 can accurately annotate cell types using marker gene information in single-cell RNA sequencing analysis. When evaluated across hundreds of tissue and cell types, GPT-4 generates cell type annotations exhibiting strong concordance with manual annotations. This capability can considerably reduce the effort and expertise required for cell type annotation. Additionally, we have developed an R software package GPTCelltype for GPT-4's automated cell type annotation.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Update of
-
Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis.bioRxiv [Preprint]. 2023 Dec 13:2023.04.16.537094. doi: 10.1101/2023.04.16.537094. bioRxiv. 2023. Update in: Nat Methods. 2024 Aug;21(8):1462-1465. doi: 10.1038/s41592-024-02235-4. PMID: 37131626 Free PMC article. Updated. Preprint.
-
Reference-free and cost-effective automated cell type annotation with GPT-4 in single-cell RNA-seq analysis.Res Sq [Preprint]. 2023 May 2:rs.3.rs-2824971. doi: 10.21203/rs.3.rs-2824971/v1. Res Sq. 2023. Update in: Nat Methods. 2024 Aug;21(8):1462-1465. doi: 10.1038/s41592-024-02235-4. PMID: 37205379 Free PMC article. Updated. Preprint.
References
-
- Hou, W. et al. GeneTuring tests GPT models in genomics. Preprint at bioRxiv10.1101/2023.03.11.532238 (2023).
-
- Hou, W. et al. GPT-4V exhibits human-like performance in biomedical image classification. Preprint at bioRxiv10.1101/2023.12.31.573796 (2024).
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
