Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 16;24(8):2306-2316.
doi: 10.1039/d3lc01045g.

A novel ratiometric design of microfluidic paper-based analytical device for the simultaneous detection of Cu2+ and Fe3+ in drinking water using a fluorescent MOF@tetracycline nanocomposite

Affiliations

A novel ratiometric design of microfluidic paper-based analytical device for the simultaneous detection of Cu2+ and Fe3+ in drinking water using a fluorescent MOF@tetracycline nanocomposite

Sabah H Al-Jaf et al. Lab Chip. .

Abstract

The regular and on-site monitoring of ions in drinking water is essential for safeguarding public health, ensuring high water quality, and preserving the ecological balance of aquatic ecosystems. Thus, developing a portable analytical device for the rapid, cost-effective, and visual on-site detection of multiple environmental pollutants is notably significant. In the present work, a novel ratiometric microfluidic paper-based analytical device (μPAD) was designed and developed for the simultaneous detection of Fe3+ and Cu2+ ions in water samples taking advantages from built-in masking zone. The μPAD was functionalized with a greenish-yellow fluorescent Zn-based metal-organic framework@tetracycline (FMOF-5@TC) nanocomposite, and the ratiometric design was based on the change in emission color from greenish yellow (FMOF-5@TC) to blue (FMOF-5). The μPAD consisted of one sample zone linked to two detection zones via two channels: the first channel was for the detection of both ions, while the second was intended for detecting only Cu2+ ions and comprised a built-in masking zone to remove Fe3+ ions prior to reaching the detection zone. The corresponding color changes were recorded with the aid of a smartphone and RGB calculations. The linear ranges were 0.1-80 μM for Cu2+ and 0.2-160 μM for Fe3+, with limits of detection of 0.027 and 0.019 μM, respectively. The simple μPAD design enabled the simultaneous detection of Cu2+ and Fe3+ ions in drinking water samples with excellent accuracy and precision, with spike recoveries of 81.28-96.36% and 83.01-102.33% for Cu2+ and Fe3+, respectively.

PubMed Disclaimer

LinkOut - more resources