Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Aug 15;99(1):187-201.
doi: 10.1111/j.1432-1033.1979.tb13245.x.

On the binding of tRNA to Escherichia coli RNA polymerase

Free article

On the binding of tRNA to Escherichia coli RNA polymerase

A Spassky et al. Eur J Biochem. .
Free article

Abstract

The fixation of tRNA to Escherichia coli RNA polymerase has been investigated. Bound and free tRNA have been separated and quantified after filtration through cellulose nitrate filters, centrifugation or sucrose gradients or electrophoresis in polyacrylamide gels. We detect no differences between the fixation of E. coli fMet-tRNAfMet, Met-tRNAmMet or uncharged unfractionated tRNA to RNA polymerase. Tight complexes, with a long residence time, are formed between core enzyme and tRNA with a dissociation constant of less than 1 nM. Complexes exist between tRNA and both monomer and dimer forms of the core enzyme. In the monomer complex, one tRNA is bound per alpha 2 beta beta' unit, whereas in the dimer complex only 0.5 tRNA molecule is fixed per alpha 2 beta beta' unit. In contrast to the core enzyme, very little tRNA fixes tightly to the holoenzyme at salt concentrations greater than 80 mM. At lower salt concentrations tRNA fixation results in a loss of sigma subunit from the holo enzyme to the resulting core enzyme where it binds tightly. DNA fixation reduces the binding of tRNA to RNA polymerase and tRNA fixation reduces the binding of DNA. However, binding of DNA to polymerase is not competitive with binding of tRNA, and ternary complexes between RNA polymerase, DNA and tRNA are shown to exist. Our results are discussed in relation to other studies concerning the effects of tRNA upon RNA polymerase.

PubMed Disclaimer

LinkOut - more resources