The automated Greulich and Pyle: a coming-of-age for segmental methods?
- PMID: 38533467
- PMCID: PMC10963464
- DOI: 10.3389/frai.2024.1326488
The automated Greulich and Pyle: a coming-of-age for segmental methods?
Abstract
The well-known Greulich and Pyle (GP) method of bone age assessment (BAA) relies on comparing a hand X-ray against templates of discrete maturity classes collected in an atlas. Automated methods have recently shown great success with BAA, especially using deep learning. In this perspective, we first review the success and limitations of various automated BAA methods. We then offer a novel hypothesis: When networks predict bone age that is not aligned with a GP reference class, it is not simply statistical error (although there is that as well); they are picking up nuances in the hand X-ray that lie "outside that class." In other words, trained networks predict distributions around classes. This raises a natural question: How can we further understand the reasons for a prediction to deviate from the nominal class age? We claim that segmental aging, that is, ratings based on characteristic bone groups can be used to qualify predictions. This so-called segmental GP method has excellent properties: It can not only help identify differential maturity in the hand but also provide a systematic way to extend the use of the current GP atlas to various other populations.
Keywords: Greulich and Pyle (GP); RSNA image share; bone aging; computer vision; personalizability.
Copyright © 2024 Chapke, Mondkar, Oza, Khadilkar, Aeppli, Sävendahl, Kajale, Ladkat, Khadilkar and Goel.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
References
-
- Alblwi A., Baksh M., Barner K. E. (2021). “Bone age assessment based on salient object segmentation,” in 2021 IEEE International Conference on Imaging Systems and Techniques (IST) (Kaohsiung: IEEE; ), 1–5. 10.1109/IST50367.2021.9651470 - DOI
-
- Chapke R. (2023). Segmentation of Pediatric Hand Radiograph Using UNet for Bone Aging [Master's thesis]. Indian Institute of Science Education and Research Pune. Available online at: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7873 (accessed February 26, 2024).
-
- Chu M., Liu B., Zhou F., Bai X., Guo B. (2018). “Bone age assessment based on two-stage deep neural networks,” in 2018 Digital Image Computing: Techniques and Applications (DICTA) (Canberra, ACT: IEEE; ), 1–6. 10.1109/DICTA.2018.8615764 - DOI
-
- Greulich W. W., Pyle S. I. (1959). Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed. Stanford, CA: Stanford University Press. 10.1097/00000441-195909000-00030 - DOI
LinkOut - more resources
Full Text Sources
