Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Feb 22;31(3):1162-1169.
doi: 10.3390/curroncol31030086.

Review on the Role of BRCA Mutations in Genomic Screening and Risk Stratification of Prostate Cancer

Affiliations
Review

Review on the Role of BRCA Mutations in Genomic Screening and Risk Stratification of Prostate Cancer

Nikolaos Kalampokis et al. Curr Oncol. .

Abstract

(1) Background: Somatic and germline alterations can be commonly found in prostate cancer (PCa) patients. The aim of our present study was to perform a comprehensive review of the current literature in order to examine the impact of BRCA mutations in the context of PCa as well as their significance as genetic biomarkers. (2) Methods: A narrative review of all the available literature was performed. Only "landmark" publications were included. (3) Results: Overall, the number of PCa patients who harbor a BRCA2 mutation range between 1.2% and 3.2%. However, BRCA2 and BRCA1 mutations are responsible for most cases of hereditary PCa, increasing the risk by 3-8.6 times and up to 4 times, respectively. These mutations are correlated with aggressive disease and poor prognosis. Gene testing should be offered to patients with metastatic PCa, those with 2-3 first-degree relatives with PCa, or those aged < 55 and with one close relative with breast (age ≤ 50 years) or invasive ovarian cancer. (4) Conclusions: The individualized assessment of BRCA mutations is an important tool for the risk stratification of PCa patients. It is also a population screening tool which can guide our risk assessment strategies and achieve better results for our patients and their families.

Keywords: genomic screening; mutations; prostate cancer.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108. doi: 10.3322/caac.21262. - DOI - PubMed
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. - DOI - PubMed
    1. National Cancer Institute SEER Cancer Statistics Factsheets Prostate Cancer. [(accessed on 4 September 2020)];2020 Available online: https://seer.cancer.gov/statfacts/html/prost.html.
    1. Lin D.W., Porter M., Montgomery B. Treatment and survival outcomes in young men diagnosed with prostate cancer: A Population-based Cohort Study. Cancer. 2009;115:2863–2871. doi: 10.1002/cncr.24324. - DOI - PMC - PubMed
    1. Kohler B.A., Ward E., McCarthy B.J., Schymura M.J., Ries L.A., Eheman C., Jemal A., Anderson R.N., Ajani U.A., Edwards B.K. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J. Natl. Cancer Inst. 2011;103:714–736. doi: 10.1093/jnci/djr077. - DOI - PMC - PubMed