Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Mar 21;14(3):418.
doi: 10.3390/life14030418.

Chronic Kidney Disease with Mineral Bone Disorder and Vascular Calcification: An Overview

Affiliations
Review

Chronic Kidney Disease with Mineral Bone Disorder and Vascular Calcification: An Overview

Carmine Izzo et al. Life (Basel). .

Abstract

Chronic kidney disease (CKD) is a global health issue with a rising prevalence, affecting 697.5 million people worldwide. It imposes a substantial burden, contributing to 35.8 million disability-adjusted life years (DALYs) and 1.2 million deaths in 2017. The mortality rate for CKD has increased by 41.5% between 1990 and 2017, positioning it as a significant cause of global mortality. CKD is associated with diverse health complications, impacting cardiovascular, neurological, nutritional, and endocrine aspects. One prominent complication is CKD-mineral and bone disorder (MBD), a complex condition involving dysregulation of bone turnover, mineralization, and strength, accompanied by soft tissue and vascular calcification. Alterations in mineral metabolism, including calcium, phosphate, parathyroid hormone (PTH), vitamin D, fibroblast growth factor-23 (FGF-23), and Klotho, play pivotal roles in CKD-MBD. These disturbances, observed early in CKD, contribute to the progression of bone disorders and renal osteodystrophy (ROD). Vascular calcification (VC) is a key component of CKD-MBD, accelerated by CKD. The pathophysiology involves complex processes in vascular smooth muscle cells and the formation of calciprotein particles (CPP). VC is closely linked to cardiovascular events and mortality, emphasizing its prognostic significance. Various serum markers and imaging techniques, including lateral plain X-ray, Kauppila Score, Adragao Score, and pulse wave velocity, aid in VC detection. Additionally, pQCT provides valuable information on arterial calcifications, offering an advantage over traditional scoring systems. CKD poses a substantial global health burden, and its complications, including CKD-MBD and VC, significantly contribute to morbidity and mortality. Understanding the intricate relationships between mineral metabolism, bone disorders, and vascular calcification is crucial for effective diagnosis and therapeutic interventions.

Keywords: cardiovascular disease (CVD); chronic kidney disease (CKD); imaging techniques; renal osteodystrophy; serum markers; vascular calcification.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of the intricate network involving mediators of chronic kidney disease–mineral bone disorder (CKD–MBD) and vascular calcification. Abbreviations: CKD–MBD, chronic kidney disease–mineral and bone disorder; MGP, Matrix Gla protein; BMP, bone morphogenetic protein; AGE, advanced glycated end-products; AGE-rs, advanced glycated end-products soluble receptors; OPG, osteoprotegerin; ROS, reactive oxygen species; FGF23, fibroblast growth factor 23; PTH, parathyroid hormone; Ca, calcium; Pi, inorganic phosphate.

References

    1. Bikbov B., Purcell C.A., Levey A.S., Smith M., Abdoli A., Abebe M., Adebayo O.M., Afarideh M., Agarwal S.K., Agudelo-Botero M., et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–733. doi: 10.1016/S0140-6736(20)30045-3. - DOI - PMC - PubMed
    1. Foreman K.J., Marquez N., Dolgert A., Fukutaki K., Fullman N., McGaughey M., Pletcher M.A., Smith A.E., Tang K., Yuan C.-W., et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392:2052–2090. doi: 10.1016/S0140-6736(18)31694-5. - DOI - PMC - PubMed
    1. Liyanage T., Ninomiya T., Jha V., Neal B., Patrice H.M., Okpechi I., Zhao M., Lv J., Garg A.X., Knight J., et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet. 2015;385:1975–1982. doi: 10.1016/S0140-6736(14)61601-9. - DOI - PubMed
    1. Himmelfarb J., Ikizler T.A. Hemodialysis. N. Engl. J. Med. 2010;363:1833–1845. doi: 10.1056/NEJMra0902710. - DOI - PubMed
    1. Sarnak M.J., Levey A.S., Schoolwerth A.C., Coresh J., Culleton B., Hamm L.L., McCullough P.A., Kasiske B.L., Kelepouris E., Klag M.J., et al. Kidney Disease as a Risk Factor for Development of Cardiovascular Disease: A Statement From the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–2169. doi: 10.1161/01.CIR.0000095676.90936.80. - DOI - PubMed

LinkOut - more resources