Synthesis and Properties of Injectable Hydrogel for Tissue Filling
- PMID: 38543325
- PMCID: PMC10975320
- DOI: 10.3390/pharmaceutics16030430
Synthesis and Properties of Injectable Hydrogel for Tissue Filling
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Keywords: hydrogel; injectability; tissue filling.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures





References
-
- Ralf Paus L., Berneburg M., Trelles M., Friguet B., Ogden S., Esrefoglu M., Kaya G., Goldberg D.J., Mordon S., Calderhead R.G., et al. How best to halt and/or revert UV-induced skin ageing: Strategies, facts and fiction. Exp. Dermatol. 2009;17:228–229. - PubMed
Publication types
Grants and funding
- 82072060/National Natural Science Foundation of China
- 22008201/National Natural Science Foundation of China
- SWU-XDPY22006/Fundamental Research Funds for the Central Universities
- 2205012980212766/Venture & Innovation Support Program for Chongqing Overseas Returnees
- cstc2020jcyj-msxmX0292/Natural Science Foundation Project of Chongqing
LinkOut - more resources
Full Text Sources