Kinetically controlled synthesis of rotaxane geometric isomers
- PMID: 38550687
- PMCID: PMC10967009
- DOI: 10.1039/d3sc04412b
Kinetically controlled synthesis of rotaxane geometric isomers
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures







References
-
- Blanco V. Carlone A. Hänni K. D. Leigh D. A. Lewandowski B. A Rotaxane-Based Switchable Organocatalyst. Angew. Chem., Int. Ed. 2012;51:5166–5169. doi: 10.1002/anie.201201364. - DOI - PubMed
- Blanco V. Leigh D. A. Marcos V. Morales-Serna J. A. Nussbaumer A. L. A Switchable [2]Rotaxane Asymmetric Organocatalyst That Utilizes an Acyclic Chiral Secondary Amine. J. Am. Chem. Soc. 2014;136:4905–4908. doi: 10.1021/ja501561c. - DOI - PubMed
- Cakmak Y. Erbas-Cakmak S. Leigh D. A. Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane. J. Am. Chem. Soc. 2016;138:1749–1751. doi: 10.1021/jacs.6b00303. - DOI - PMC - PubMed
- Eichstaedt K. Jaramillo-Garcia J. Leigh D. A. Marcos V. Pisano S. Singleton T. A. Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst. J. Am. Chem. Soc. 2017;139:9376–9381. doi: 10.1021/jacs.7b04955. - DOI - PubMed
- Heard A. W. Goldup S. M. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis. Chem. 2020;6:994–1006. doi: 10.1016/j.chempr.2020.02.006. - DOI - PMC - PubMed
- Kwamen C. Niemeyer J. Functional Rotaxanes in Catalysis. Chem.–Eur. J. 2021;27:175–186. doi: 10.1002/chem.202002876. - DOI - PMC - PubMed
- Lim J. Y. C. Yuntawattana N. Beer P. D. Williams C. K. Isoselective Lactide Ring Opening Polymerisation using [2]Rotaxane Catalysts. Angew. Chem., Int. Ed. 2019;58:6007–6011. doi: 10.1002/anie.201901592. - DOI - PMC - PubMed
- Martinez-Cuezva A. Saura-Sanmartin A. Alajarin M. Berna J. Mechanically Interlocked Catalysts for Asymmetric Synthesis. ACS Catal. 2020;10:7719–7733. doi: 10.1021/acscatal.0c02032. - DOI
- Martinez-Cuezva A. Saura-Sanmartin A. Nicolas-Garcia T. Navarro C. Orenes R.-A. Alajarin M. Berna J. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis–Hillman reaction. Chem. Sci. 2017;8:3775–3780. doi: 10.1039/C7SC00724H. - DOI - PMC - PubMed
-
- Borsley S. Leigh D. A. Roberts B. M. W. A Doubly Kinetically-Gated Information Ratchet Autonomously Driven by Carbodiimide Hydration. J. Am. Chem. Soc. 2021;143:4414–4420. doi: 10.1021/jacs.1c01172. - DOI - PubMed
- Dongen S. F. M. v. Cantekin S. Elemans J. A. A. W. Rowan A. E. Nolte R. J. M. Functional interlocked systems. Chem. Soc. Rev. 2013;43:99–122. doi: 10.1039/C3CS60178A. - DOI - PubMed
- Erbas-Cakmak S. Leigh D. A. McTernan C. T. Nussbaumer A. L. Artificial Molecular Machines. Chem. Rev. 2015;115:10081–10206. doi: 10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
- Groppi J. Casimiro L. Canton M. Corra S. Jafari-Nasab M. Tabacchi G. Cavallo L. Baroncini M. Silvi S. Fois E. Credi A. Precision Molecular Threading/Dethreading. Angew. Chem., Int. Ed. 2020;132:14935–14944. doi: 10.1002/ange.202003064. - DOI - PMC - PubMed
- Kay E. R. Leigh D. A. Rise of the Molecular Machines. Angew. Chem., Int. Ed. 2015;54:10080–10088. doi: 10.1002/anie.201503375. - DOI - PMC - PubMed
- Lewis J. E. M. Galli M. Goldup S. M. Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 2016;53:298–312. doi: 10.1039/C6CC07377H. - DOI - PubMed
- Mena-Hernando S. Pérez E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 2019;48:5016–5032. doi: 10.1039/C8CS00888D. - DOI - PubMed
- Neal E. A. Goldup S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun. 2014;50:5128–5142. doi: 10.1039/C3CC47842D. - DOI - PubMed
- Sluysmans D. Lussis P. Fustin C.-A. Bertocco A. Leigh D. A. Duwez A.-S. Real-Time Fluctuations in Single-Molecule Rotaxane Experiments Reveal an Intermediate Weak Binding State during Shuttling. J. Am. Chem. Soc. 2021;143:2348–2352. doi: 10.1021/jacs.0c12161. - DOI - PubMed
- Stanier C. A. Alderman S. J. Claridge T. D. W. Anderson H. L. Unidirectional Photoinduced Shuttling in a Rotaxane with a Symmetric Stilbene Dumbbell. Angew. Chem., Int. Ed. 2002;41:1769–1772. doi: 10.1002/1521-3773(20020517)41:10<1769::AID-ANIE1769>3.0.CO;2-N. - DOI - PubMed
- Takata T. Switchable Polymer Materials Controlled by Rotaxane Macromolecular Switches. ACS Cent. Sci. 2020;6:129–143. doi: 10.1021/acscentsci.0c00002. - DOI - PMC - PubMed
- Wu P. Dharmadhikari B. Patra P. Xiong X. Rotaxane nanomachines in future molecular electronics. Nanoscale Adv. 2022;4:3418–3461. doi: 10.1039/D2NA00057A. - DOI - PMC - PubMed
- Yao B. Sun H. Yang L. Wang S. Liu X. Recent Progress in Light-Driven Molecular Shuttles. Front. Chem. 2022;9:832735. doi: 10.3389/fchem.2021.832735. - DOI - PMC - PubMed
- Zhou H.-Y. Zong Q.-S. Han Y. Chen C.-F. Recent advances in higher order rotaxane architectures. Chem. Commun. 2020;56:9916–9936. doi: 10.1039/D0CC03057K. - DOI - PubMed
-
- Baroncini M. Silvi S. Credi A. Photo- and Redox-Driven Artificial Molecular Motors. Chem. Rev. 2020;120:200–268. doi: 10.1021/acs.chemrev.9b00291. - DOI - PubMed
- Feng Y. Ovalle M. Seale J. S. W. Lee C. K. Kim D. J. Astumian R. D. Stoddart J. F. Molecular Pumps and Motors. J. Am. Chem. Soc. 2021;143:5569–5591. doi: 10.1021/jacs.0c13388. - DOI - PubMed
-
- Bordoli R. J. Goldup S. M. An Efficient Approach to Mechanically Planar Chiral Rotaxanes. J. Am. Chem. Soc. 2014;136:4817–4820. doi: 10.1021/ja412715m. - DOI - PMC - PubMed
- Casati C. Franchi P. Pievo R. Mezzina E. Lucarini M. Unraveling Unidirectional Threading of α-Cyclodextrin in a [2]Rotaxane through Spin Labeling Approach. J. Am. Chem. Soc. 2012;134:19108–19117. doi: 10.1021/ja3073484. - DOI - PubMed
- d'Orchymont F. Holland J. P. Supramolecular Rotaxane-Based Multi-Modal Probes for Cancer Biomarker Imaging. Angew. Chem., Int. Ed. 2022;61:e202204072. doi: 10.1002/anie.202204072. - DOI - PMC - PubMed
- Jamieson E. M. G. Modicom F. Goldup S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 2018;47:5266–5311. doi: 10.1039/C8CS00097B. - DOI - PMC - PubMed
- Jinks M. A. de Juan A. Denis M. Fletcher C. J. Galli M. Jamieson E. M. G. Modicom F. Zhang Z. Goldup S. M. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew. Chem., Int. Ed. 2018;57:14806–14810. doi: 10.1002/anie.201808990. - DOI - PMC - PubMed
- Makita Y. Kihara N. Takata T. Synthesis and kinetic resolution of directional isomers of [2]rotaxanes bearing a lariat crown ether wheel. Supramol. Chem. 2021;33:1–7. doi: 10.1080/10610278.2021.1895994. - DOI
- Maynard J. R. J. Goldup S. M. Strategies for the Synthesis of Enantiopure Mechanically Chiral Molecules. Chem. 2020;6:1914–1932. doi: 10.1016/j.chempr.2020.07.012. - DOI
- Nakazono K. Takata T. Mechanical Chirality of Rotaxanes: Synthesis and Function. Symmetry. 2020;12:144. doi: 10.3390/sym12010144. - DOI
- Pairault N. Niemeyer J. Chiral Mechanically Interlocked Molecules – Applications of Rotaxanes, Catenanes and Molecular Knots in Stereoselective Chemosensing and Catalysis. Synlett. 2018;29:689–698. doi: 10.1055/s-0036-1591934. - DOI
-
- Bazzoni M. Andreoni L. Silvi S. Credi A. Cera G. Secchi A. Arduini A. Selective access to constitutionally identical, orientationally isomeric calix[6]arene-based [3]rotaxanes by an active template approach. Chem. Sci. 2021;12:6419–6428. doi: 10.1039/D1SC00279A. - DOI - PMC - PubMed
- La Manna P. Talotta C. Gaeta C. Soriente A. De Rosa M. Neri P. Threading of an Inherently Directional Calixarene Wheel with Oriented Ammonium Axles. J. Org. Chem. 2017;82:8973–8983. doi: 10.1021/acs.joc.7b01388. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources