Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;48(6):103842.
doi: 10.1016/j.rbmo.2024.103842. Epub 2024 Jan 18.

An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes

Affiliations
Free article

An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes

Jullin Fjeldstad et al. Reprod Biomed Online. 2024 Jun.
Free article

Abstract

Research question: Can a deep learning image analysis model be developed to assess oocyte quality by predicting blastocyst development from images of denuded mature oocytes?

Design: A deep learning model was developed utilizing 37,133 static oocyte images with associated laboratory outcomes from eight fertility clinics (six countries). A subset of data (n = 7807) was allocated to test model performance. External model validation was conducted to assess generalizability and robustness on new data (n = 12,357) from two fertility clinics (two countries). Performance was assessed by calculating area under the curve (AUC), balanced accuracy, specificity and sensitivity. Subgroup analyses were performed on the test dataset for age group, male factor and geographical location of the clinic. Model probabilities of the external dataset were converted to a 0-10 scoring scale to facilitate analysis of correlation with blastocyst development and quality.

Results: The deep learning model demonstrated AUC of 0.64, balanced accuracy of 0.60, specificity of 0.55 and sensitivity of 0.65 on the test dataset. Subgroup analyses displayed the highest performance for age group 38-39 years (AUC 0.68), a negligible impact of male factor, and good model generalizability across geographical locations. Model performance was confirmed on external data: AUC of 0.63, balanced accuracy of 0.58, specificity of 0.57 and sensitivity of 0.59. Analysis of the scoring scale revealed that higher scoring oocytes correlated with higher likelihood of blastocyst development and good-quality blastocyst formation.

Conclusion: The deep learning model showed a favourable performance for the evaluation of oocytes in terms of competence to develop into a blastocyst, and when the predictions were converted into scores, they correlated with blastocyst quality. This represents a significant first step in oocyte evaluation for scientific and clinical applications.

Keywords: Artificial intelligence; Assisted reproductive technology; Blastocyst development; IVF; Oocyte quality.

PubMed Disclaimer

LinkOut - more resources