Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May;266(Pt 1):131236.
doi: 10.1016/j.ijbiomac.2024.131236. Epub 2024 Mar 28.

Studies on the biological role of the antifungal protein PeAfpA from Penicillium expansum by functional gene characterization and transcriptomic profiling

Affiliations
Free article

Studies on the biological role of the antifungal protein PeAfpA from Penicillium expansum by functional gene characterization and transcriptomic profiling

Carolina Ropero-Pérez et al. Int J Biol Macromol. 2024 May.
Free article

Abstract

Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.

Keywords: Antifungal protein (AFP); Biological function; Null mutant; PeAfpA; Penicillium expansum; Transcriptomics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary concepts