Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1:588:112213.
doi: 10.1016/j.mce.2024.112213. Epub 2024 Mar 29.

Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis

Affiliations

Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis

Qiu Liang et al. Mol Cell Endocrinol. .

Abstract

Objective: Difficult-to-heal wound is a prevalent and significant complication of diabetes, characterized by impaired functionality of epithelial cells such as fibroblasts. This study aims to investigate the potential mechanism of ADSC-Exos promoting diabetic wound healing by regulating fibroblast function.

Materials and methods: ADSC-Exos were confirmed through TEM, NTA, and Western Blot techniques. The study conducted on rat skin fibroblasts (RSFs) exposed to 33 mmol/L glucose in vitro. We used cck-8, EDU, transwell, and scratch assays to verify the proliferation and migration of RSFs. Furthermore, levels of TGF-β1 and α-SMA proteins were determined by immunofluorescence and Western Blot. RSFs were transfected with miR-128-1-5p mimics and inhibitors, followed by quantification of TGF-β1, α-SMA, Col I and Smad2/3 protein levels using Western Blot. In vivo, the effects of ADSC-Exos on diabetic wounds were assessed using digital imaging, histological staining, as well as Western Blot analysis.

Results: In vitro, ADSC-Exos significantly enhanced proliferation and migration of RSFs while reducing the expression of TGF-β1 and α-SMA. In vivo, ADSC-Exos effectively promoted diabetic wound healing and mitigated scar fibrosis. Additionally, ADSC-Exos exhibited elevated levels of miR-128-1-5p, which targets TGF-β1, resulting in a notable reduction in TGF-β1, α-SMA, Col I and smad2/3 phosphorylation in RSFs.

Conclusion: In conclusion, our results demonstrated that ADSC-Exos promoted diabetic wound healing, and inhibited skin fibrosis by regulating miR-128-1-5p/TGF-β1/Smad signaling pathway, which provides a promising innovative treatment for diabetic wound healing.

Keywords: ADSC-Exos; Diabetic wound; Smad pathway; TGF-β1; miR-128-1-5p.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

LinkOut - more resources