Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 1;178(6):577-585.
doi: 10.1001/jamapediatrics.2024.0304.

Association of Fetal Catecholamines With Neonatal Hypoglycemia

Affiliations

Association of Fetal Catecholamines With Neonatal Hypoglycemia

Henrike Hoermann et al. JAMA Pediatr. .

Abstract

Importance: Perinatal stress and fetal growth restriction increase the risk of neonatal hypoglycemia. The underlying pathomechanism is poorly understood. In a sheep model, elevated catecholamine concentrations were found to suppress intrauterine insulin secretion, followed by hyperresponsive insulin secretion once the adrenergic stimulus subsided.

Objective: To determine whether neonates with risk factors for hypoglycemia have higher catecholamine concentrations in umbilical cord blood (UCB) and/or amniotic fluid (AF) and whether catecholamines are correlated with postnatal glycemia.

Design, setting, and participants: In a prospective cohort study of 328 neonates at a tertiary perinatal center from September 2020 through May 2022 in which AF and UCB were collected immediately during and after delivery, catecholamines and metanephrines were analyzed using liquid chromatography with tandem mass spectrometry. Participants received postnatal blood glucose (BG) screenings.

Exposure: Risk factor for neonatal hypoglycemia.

Main outcomes and measures: Comparison of catecholamine and metanephrine concentrations between at-risk neonates and control participants, and correlation of concentrations of catecholamines and metanephrines with the number and severity of postnatal hypoglycemic episodes.

Results: In this study of 328 neonates (234 in the risk group: median [IQR] gestational age, 270 [261-277] days; and 94 in the control group: median [IQR] gestational age, 273 [270-278] days), growth-restricted neonates showed increased UCB median (IQR) concentrations of norepinephrine (21.10 [9.15-42.33] vs 10.88 [5.78-18.03] nmol/L; P < .001), metanephrine (0.37 [0.13-1.36] vs 0.12 [0.08-0.28] nmol/L; P < .001), and 3-methoxytyramine (0.149 [0.098-0.208] vs 0.091 [0.063-0.149] nmol/L; P = .001). Neonates with perinatal stress had increased UCB median (IQR) concentrations of norepinephrine (22.55 [8.99-131.66] vs 10.88 [5.78-18.03] nmol/L; P = .001), normetanephrine (1.75 [1.16-4.93] vs 1.25 [0.86-2.56] nmol/L; P = .004), and 3-methoxytyramine (0.120 [0.085-0.228] vs 0.091 [0.063-0.149] nmol/L; P = .008) (P < .0083 was considered statistically significant). Concentrations of UCB norepinephrine, metanephrine, and 3-methoxytyramine were negatively correlated with AF C-peptide concentration (rs = -0.212, P = .005; rs = -0.182, P = .016; and rs = -0.183, P = .016, respectively [P < .017 was considered statistically significant]). Concentrations of UCB norepinephrine, metanephrine, and 3-methoxytyramine were positively correlated with the number of hypoglycemic episodes (BG concentration of 30-45 mg/dL) (rs = 0.146, P = .01; rs = 0.151, P = .009; and rs = 0.180, P = .002, respectively). Concentrations of UCB metanephrine and 3-methoxytyramine were negatively correlated with the lowest measured BG concentration (rs = -0.149, P = .01; and rs = -0.153, P = .008, respectively).

Conclusions and relevance: Neonates at risk for hypoglycemia displayed increased catecholamine and metanephrine concentrations that were correlated with postnatal hypoglycemic episodes and lower BG levels; these results are consistent with findings in a sheep model that fetal catecholamines are associated with neonatal β-cell physiology and that perinatal stress or growth restriction is associated with subsequent neonatal hyperinsulinemic hypoglycemia. Improving the pathomechanistic understanding of neonatal hypoglycemia may help to guide management of newborns at risk for hypoglycemia.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Hoermann reported involvement in contract research, serving as a subinvestigator for studies of Zealand Pharma. Dr Kema reported having a patent issued for methods and kits for the derivatization of a biogenic amine. Dr Meissner reported receiving financial support from Zealand Pharma. Dr Kummer reported receiving consulting fees from Pfizer, grants from Zealand Pharma, and travel support from Novo Nordisk outside the submitted work. No other disclosures were reported.

References

    1. McKinlay CJ, Alsweiler JM, Ansell JM, et al. ; CHYLD Study Group . Neonatal glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med. 2015;373(16):1507-1518. doi:10.1056/NEJMoa1504909 - DOI - PMC - PubMed
    1. Harris DL, Weston PJ, Harding JE. Incidence of neonatal hypoglycemia in babies identified as at risk. J Pediatr. 2012;161(5):787-791. doi:10.1016/j.jpeds.2012.05.022 - DOI - PubMed
    1. Steinkrauss L, Lipman TH, Hendell CD, Gerdes M, Thornton PS, Stanley CA. Effects of hypoglycemia on developmental outcome in children with congenital hyperinsulinism. J Pediatr Nurs. 2005;20(2):109-118. doi:10.1016/j.pedn.2004.12.009 - DOI - PubMed
    1. Roeper M, Salimi Dafsari R, Hoermann H, Mayatepek E, Kummer S, Meissner T. Risk factors for adverse neurodevelopment in transient or persistent congenital hyperinsulinism. Front Endocrinol (Lausanne). 2020;11:580642. doi:10.3389/fendo.2020.580642 - DOI - PMC - PubMed
    1. Stanley CA, Rozance PJ, Thornton PS, et al. . Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr. 2015;166(6):1520-5.e1. doi:10.1016/j.jpeds.2015.02.045 - DOI - PMC - PubMed

MeSH terms