Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania
- PMID: 38558208
- DOI: 10.1111/mmi.15256
Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania
Abstract
Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.
Keywords: CRISPR/Cas9; efficiency; kinetoplastids; marker‐free; protist; ribonucleoprotein complex transfection; universal.
© 2024 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Similar articles
-
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.mBio. 2017 Nov 7;8(6):e01788-17. doi: 10.1128/mBio.01788-17. mBio. 2017. PMID: 29114029 Free PMC article.
-
Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept.Exp Parasitol. 2023 Sep;252:108589. doi: 10.1016/j.exppara.2023.108589. Epub 2023 Jul 28. Exp Parasitol. 2023. PMID: 37516291
-
State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids.J Eukaryot Microbiol. 2019 Nov;66(6):981-991. doi: 10.1111/jeu.12747. Epub 2019 Jul 7. J Eukaryot Microbiol. 2019. PMID: 31211904 Free PMC article. Review.
-
An Efficient Expression and Purification Protocol for SpCas9 Nuclease and Evaluation of Different Delivery Methods of Ribonucleoprotein.Int J Mol Sci. 2024 Jan 28;25(3):1622. doi: 10.3390/ijms25031622. Int J Mol Sci. 2024. PMID: 38338898 Free PMC article.
-
Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae.Infect Genet Evol. 2018 Sep;63:326-331. doi: 10.1016/j.meegid.2018.02.030. Epub 2018 Feb 25. Infect Genet Evol. 2018. PMID: 29486366 Review.
Cited by
-
Next generation genetic screens in kinetoplastids.Nucleic Acids Res. 2025 Jun 6;53(11):gkaf515. doi: 10.1093/nar/gkaf515. Nucleic Acids Res. 2025. PMID: 40530689 Free PMC article. Review.
-
Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.Mol Ther Nucleic Acids. 2024 Aug 19;35(3):102313. doi: 10.1016/j.omtn.2024.102313. eCollection 2024 Sep 10. Mol Ther Nucleic Acids. 2024. PMID: 39281702 Free PMC article. Review.
-
The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei operates also in the gluconeogenic direction.PLoS Biol. 2025 May 16;23(5):e3002938. doi: 10.1371/journal.pbio.3002938. eCollection 2025 May. PLoS Biol. 2025. PMID: 40378123 Free PMC article.
-
PUF3 RNA binding protein of Trypanosoma cruzi regulates mitochondrial morphology and function.Heliyon. 2024 Jun 14;10(12):e32810. doi: 10.1016/j.heliyon.2024.e32810. eCollection 2024 Jun 30. Heliyon. 2024. PMID: 39022037 Free PMC article.
References
REFERENCES
-
- Allmann, S., Wargnies, M., Plazolles, N., Cahoreau, E., Biran, M., Morand, P. et al. (2021) Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biology, 19, e3001359.
-
- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S. et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.
-
- Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J. & Gluenz, E. (2017) A CRISPR Cas9 high‐throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4, 170095.
-
- Boutin, J., Rosier, J., Cappellen, D., Prat, F., Toutain, J., Pennamen, P. et al. (2021) CRISPR‐Cas9 globin editing can induce megabase‐scale copy‐neutral losses of heterozygosity in hematopoietic cells. Nature Communications, 12, 4922.
-
- Bringaud, F., Biran, M., Millerioux, Y., Wargnies, M., Allmann, S. & Mazet, M. (2015) Combining reverse genetics and nuclear magnetic resonance‐based metabolomics unravels trypanosome‐specific metabolic pathways. Molecular Microbiology, 96, 917–926.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous