Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 15:179:106-120.
doi: 10.1016/j.actbio.2024.03.025. Epub 2024 Mar 30.

Bioengineering autologous cartilage grafts for functional posterior lamellar eyelid reconstruction: A preliminary study in rabbits

Affiliations

Bioengineering autologous cartilage grafts for functional posterior lamellar eyelid reconstruction: A preliminary study in rabbits

Yuxin Yan et al. Acta Biomater. .

Abstract

The reconstruction of posterior lamellar eyelid defects remains a significant challenge in clinical practice due to anatomical complexity, specialized function, and aesthetic concerns. The ideal substitute for the posterior lamellar should replicate the native tarsoconjunctival tissue, providing both mechanical support for the eyelids and a smooth surface for the globe after implantation. In this study, we present an innovative approach utilizing tissue-engineered cartilage (TEC) grafts generated from rabbit auricular chondrocytes and a commercialized type I collagen sponge to reconstruct critical-sized posterior lamellar defects in rabbits. The TEC grafts demonstrated remarkable mechanical strength and maintained a stable cartilaginous phenotype both in vitro and at 6 months post-implantation in immunodeficient mice. When employed as autografts to reconstruct tarsal plate defects in rabbits' upper eyelids, these TEC grafts successfully restored normal eyelid morphology, facilitated smooth eyelid movement, and preserved the histological structure of the conjunctival epithelium. When applied in bilayered tarsoconjunctival defect reconstruction, these TEC grafts not only maintained the normal contour of the upper eyelid but also supported conjunctival epithelial cell migration and growth from the defect margin towards the centre. These findings highlight that auricular chondrocyte-based TEC grafts hold great promise as potential candidates for clinical posterior lamellar reconstruction. STATEMENT OF SIGNIFICANCE: The complex structure and function of the posterior lamellar eyelid continue to be significant challenges for clinical reconstructive surgeries. In this study, we utilized autologous auricular chondrocyte-based TEC grafts for posterior lamellar eyelid reconstruction in a preclinical rabbit model. The TEC grafts exhibited native cartilaginous histomorphology and comparable mechanical strength to those of the native human tarsal plate. In rabbit models with either tarsal plate defects alone or bilayered tarsoconjunctival defects, TEC grafts successfully restored the normal eyelid contour and movement, as well as supported preservation and growth of conjunctival epithelium. This is the first study to demonstrate autologous TEC grafts can be employed for repairing tarsal plate defects, thereby offering an alternative therapeutic approach for treating posterior lamellar defects in clinic settings.

Keywords: Conjunctival regeneration; Eyelid reconstruction; Posterior lamella; Regenerative medicine; Tissue-engineered cartilage.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources