This is a preprint.
Cancer-associated DNA Hypermethylation of Polycomb Targets Requires DNMT3A Dual Recognition of Histone H2AK119 Ubiquitination and the Nucleosome Acidic Patch
- PMID: 38562823
- PMCID: PMC10983913
- DOI: 10.1101/2024.03.18.585588
Cancer-associated DNA Hypermethylation of Polycomb Targets Requires DNMT3A Dual Recognition of Histone H2AK119 Ubiquitination and the Nucleosome Acidic Patch
Update in
-
Cancer-associated DNA hypermethylation of Polycomb targets requires DNMT3A dual recognition of histone H2AK119 ubiquitination and the nucleosome acidic patch.Sci Adv. 2024 Aug 30;10(35):eadp0975. doi: 10.1126/sciadv.adp0975. Epub 2024 Aug 28. Sci Adv. 2024. PMID: 39196936 Free PMC article.
Abstract
During tumor development, promoter CpG islands (CGIs) that are normally silenced by Polycomb repressive complexes (PRCs) become DNA hypermethylated. The molecular mechanism by which de novo DNA methyltransferase(s) catalyze CpG methylation at PRC-regulated regions remains unclear. Here we report a cryo-EM structure of the DNMT3A long isoform (DNMT3A1) N-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine 119 monoubiquitination (H2AK119Ub). We identify regions within the DNMT3A1 N-terminus that bind H2AK119Ub and the nucleosome acidic patch. This bidentate interaction is required for effective DNMT3A1 engagement with H2AK119Ub-modified chromatin in cells. Furthermore, aberrant redistribution of DNMT3A1 to Polycomb target genes inhibits their transcriptional activation during cell differentiation and recapitulates the cancer-associated DNA hypermethylation signature. This effect is rescued by disruption of the DNMT3A1-acidic patch interaction. Together, our analyses reveal a binding interface critical for countering promoter CGI DNA hypermethylation, a major molecular hallmark of cancer.
Publication types
LinkOut - more resources
Full Text Sources