Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Mar 21:2024.03.19.585637.
doi: 10.1101/2024.03.19.585637.

Mapping single-cell developmental potential in health and disease with interpretable deep learning

Mapping single-cell developmental potential in health and disease with interpretable deep learning

Minji Kang et al. bioRxiv. .

Abstract

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency - the capacity of a cell to differentiate into other cell types - has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data. Across 31 human and mouse scRNA-seq datasets encompassing 28 tissue types, CytoTRACE 2 outperformed existing methods for recovering experimentally determined potency levels and differentiation states covering the entire range of cellular ontogeny. Moreover, it reconstructed the temporal hierarchy of mouse embryogenesis across 62 timepoints; identified pan-tissue expression programs that discriminate major potency levels; and facilitated discovery of cellular phenotypes in cancer linked to survival and immunotherapy resistance. Our results illuminate a fundamental feature of cell biology and provide a broadly applicable platform for delineating single-cell differentiation landscapes in health and disease.

PubMed Disclaimer

Publication types

LinkOut - more resources