Predicting central cervical lymph node metastasis in papillary thyroid microcarcinoma using deep learning
- PMID: 38563008
- PMCID: PMC10984175
- DOI: 10.7717/peerj.16952
Predicting central cervical lymph node metastasis in papillary thyroid microcarcinoma using deep learning
Abstract
Background: The aim of this study is to design a deep learning (DL) model to preoperatively predict the occurrence of central lymph node metastasis (CLNM) in patients with papillary thyroid microcarcinoma (PTMC).
Methods: This research collected preoperative ultrasound (US) images and clinical factors of 611 PTMC patients. The clinical factors were analyzed using multivariate regression. Then, a DL model based on US images and clinical factors was developed to preoperatively predict CLNM. The model's efficacy was evaluated using the receiver operating characteristic (ROC) curve, along with accuracy, sensitivity, specificity, and the F1 score.
Results: The multivariate analysis indicated an independent correlation factors including age ≥55 (OR = 0.309, p < 0.001), tumor diameter (OR = 2.551, p = 0.010), macrocalcifications (OR = 1.832, p = 0.002), and capsular invasion (OR = 1.977, p = 0.005). The suggested DL model utilized US images achieved an average area under the curve (AUC) of 0.65, slightly outperforming the model that employed traditional clinical factors (AUC = 0.64). Nevertheless, the model that incorporated both of them did not enhance prediction accuracy (AUC = 0.63).
Conclusions: The suggested approach offers a reference for the treatment and supervision of PTMC. Among three models used in this study, the deep model relied generally more on image modalities than the data modality of clinic records when making the predictions.
Keywords: Central lymph node metastases; Deep learning; Papillary thyroid microcarcinoma; Ultrasound image.
©2024 Wang et al.
Conflict of interest statement
The authors declare there are no competing interests.
Figures





Similar articles
-
Development of a nomogram for prediction of central lymph node metastasis of papillary thyroid microcarcinoma.BMC Cancer. 2024 Feb 20;24(1):235. doi: 10.1186/s12885-024-12004-3. BMC Cancer. 2024. PMID: 38378515 Free PMC article.
-
[Analysis of risk factors for central lymph node metastasis in papillary thyroid microcarcinoma].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019 Jan 7;54(1):12-17. doi: 10.3760/cma.j.issn.1673-0860.2019.01.004. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019. PMID: 30704163 Chinese.
-
Predicting central lymph node metastasis in papillary thyroid microcarcinoma: a breakthrough with interpretable machine learning.Front Endocrinol (Lausanne). 2025 May 12;16:1537386. doi: 10.3389/fendo.2025.1537386. eCollection 2025. Front Endocrinol (Lausanne). 2025. PMID: 40421246 Free PMC article.
-
Clinicopathologic predictors of central lymph node metastases in clinical node-negative papillary thyroid microcarcinoma: a systematic review and meta-analysis.World J Surg Oncol. 2022 Apr 1;20(1):106. doi: 10.1186/s12957-022-02573-7. World J Surg Oncol. 2022. PMID: 35365171 Free PMC article.
-
The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: a meta-analysis.Eur Arch Otorhinolaryngol. 2017 Mar;274(3):1327-1338. doi: 10.1007/s00405-016-4302-0. Epub 2016 Sep 19. Eur Arch Otorhinolaryngol. 2017. PMID: 27645473 Review.
Cited by
-
Development and validation of a machine learning model for central compartmental lymph node metastasis in solitary papillary thyroid microcarcinoma via ultrasound imaging features and clinical parameters.BMC Med Imaging. 2025 Jul 1;25(1):228. doi: 10.1186/s12880-025-01757-3. BMC Med Imaging. 2025. PMID: 40596956 Free PMC article.
-
Development of a clinical-molecular prediction model for central lymph node metastasis in cN0 stage papillary thyroid microcarcinoma: a retrospective study.BMC Cancer. 2025 Apr 14;25(1):693. doi: 10.1186/s12885-025-14112-0. BMC Cancer. 2025. PMID: 40229698 Free PMC article.
-
Preoperative circulating tumor cells level is associated with lymph node metastasis in patients with unifocal papillary thyroid carcinoma.World J Surg Oncol. 2025 Feb 11;23(1):47. doi: 10.1186/s12957-025-03702-8. World J Surg Oncol. 2025. PMID: 39934782 Free PMC article.
-
Additional diagnostic value of ratio indices of quantitative contrast-enhanced ultrasound parameters in small solid C-TIRADS 4 thyroid nodules.Front Oncol. 2025 Apr 22;15:1565400. doi: 10.3389/fonc.2025.1565400. eCollection 2025. Front Oncol. 2025. PMID: 40330821 Free PMC article.
-
AI-based multimodal prediction of lymph node metastasis and capsular invasion in cT1N0M0 papillary thyroid carcinoma.Front Endocrinol (Lausanne). 2025 May 27;16:1580885. doi: 10.3389/fendo.2025.1580885. eCollection 2025. Front Endocrinol (Lausanne). 2025. PMID: 40496555 Free PMC article.
References
-
- Feng JW, Ye J, Qi GF, Hong LZ, Wang F, Liu SY, Jiang Y. LASSO-based machine learning models for the prediction of central lymph node metastasis in clinically negative patients with papillary thyroid carcinoma. Frontiers in Endocrinology. 2022a;13:1030045. doi: 10.3389/fendo.2022.1030045. - DOI - PMC - PubMed
MeSH terms
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical