Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Apr 25;16(16):7752-7785.
doi: 10.1039/d4nr00321g.

Advances in flame synthesis of nano-scale architectures for chemical, biomolecular, plasmonic, and light sensing

Affiliations
Review

Advances in flame synthesis of nano-scale architectures for chemical, biomolecular, plasmonic, and light sensing

Zain Ul Abideen et al. Nanoscale. .

Abstract

Flame spray pyrolysis (FSP), a key technique under the broader category of flame aerosol synthesis, is being increasingly explored for the design of advanced miniaturized sensor architectures with applications including chemical, biomolecular, plasmonic, and light sensing. This review provides an overview of the advantages of FSP for the fabrication of nanostructured materials for sensing, delving into synthesis strategies and material structures that meet the increasing demands for miniaturized sensor devices. We focus on the fundamentals of FSP, discussing reactor configurations and how process parameters such as precursor compositions, flow rates, and temperature influence nanoparticle characteristics and their sensing performance. A detailed analysis of nanostructures, compositions, and morphologies made by FSP and their applications in chemical, chemiresistive, plasmonic, biosensing, and light sensing is presented. This review identifies the challenges and opportunities of FSP, exploring current limitations and potential improvements for industrial translation. We conclude by highlighting future research directions aiming to establish guidelines for the flame-based design of nano-scale sensing architectures.

PubMed Disclaimer

LinkOut - more resources