Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;242(6):1387-1397.
doi: 10.1007/s00221-024-06824-9. Epub 2024 Apr 2.

Activation of NLRP3 inflammasome in a rat model of cerebral small vessel disease

Affiliations

Activation of NLRP3 inflammasome in a rat model of cerebral small vessel disease

Meiyan Zhang et al. Exp Brain Res. 2024 Jun.

Abstract

Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.

Keywords: Blood-brain barrier; Cerebral small vessel disease; Endothelial cells; NLRP3 inflammasome; White matter.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Albornoz EA, Amarilla AA, Modhiran N, Parker S, LI XX, Wijesundara DK, Aguado J, Zamora AP, Mcmillan CLD, Liang B, Peng NYG, Saima SNGJDJ, Fung FT, Lee JN, Paramitha JD, Parry D, Avumegah R, Isaacs MS, Miranda-Chacon ALOMW, Bradshaw Z, Salinas-Rebolledo D, Rajapakse C, Wolvetang NW, Munro EJ, Rojas-Fernandez TP, Young A, Stacey PR, Khromykh KJ, Chappell AA, Watterson KJ, D., Woodruff TM (2022) SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry
    1. Dominic A, Le NT, Takahashi M (2022) Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal 36:784–796 - DOI - PubMed
    1. Dunn PJ, Harvey NR, Maksemous N, Smith RA, Sutherland HG, Haupt LM, Griffiths LR (2022) Investigation of mitochondrial related variants in a cerebral small Vessel Disease Cohort. Mol Neurobiol 59:5366–5378 - DOI - PubMed - PMC
    1. Edison P (2021) Microglial activation and blood-brain barrier leakage: chicken and egg? Brain 144:1284–1285 - DOI - PubMed - PMC
    1. Gao F, Jing Y, Zang P, Hu X, Gu C, Wu R, Chai B, Zhang Y (2019) Vascular cognitive impairment caused by Cerebral Small Vessel Disease is Associated with the TLR4 in the Hippocampus. J Alzheimers Dis 70:563–572 - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources