Mesenchymal stromal cell extracellular vesicles improve lung development in mechanically ventilated preterm lambs
- PMID: 38563994
- PMCID: PMC11380989
- DOI: 10.1152/ajplung.00349.2023
Mesenchymal stromal cell extracellular vesicles improve lung development in mechanically ventilated preterm lambs
Abstract
Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. Preterm lambs (∼129 days; equivalent to human lung development at ∼28 wk gestation) were exposed to antenatal steroids, surfactant, caffeine, and supported by mechanical ventilation for 6-7 days. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2 × 1011 particles iv; n = 8; 4 F/4 M) or vehicle control (saline iv; 4 F/4 M) at 6 and 78 h post delivery. Physiological targets were pulse oximetry O2 saturation 90-94% ([Formula: see text] 60-90 mmHg), [Formula: see text] 45-60 mmHg (pH 7.25-7.35), and tidal volume 5-7 mL/kg. MSC-sEVs-treated preterm lambs tolerated enteral feedings compared with vehicle control preterm lambs. Differences in weight patterns were statistically significant. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were significantly lower for the MSC-sEVs group. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were significantly higher for the MSC-sEVs group. MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at risk of developing BPD.NEW & NOTEWORTHY This study focused on potential treatment of preterm infants at risk of developing bronchopulmonary dysplasia (BPD), for which no effective treatment exists. We tested treatment of mechanically ventilated preterm lambs with human mesenchymal stromal cell extracellular vesicles (MSC-sEVs). The results show improved respiratory gas exchange and parenchymal growth of capillaries and epithelium that are necessary for alveolar formation. Our study provides new mechanistic insight into potential efficacy of MSC-sEVs for preterm infants at risk of developing BPD.
Keywords: alveolar formation; bronchopulmonary dysplasia; chronic lung disease of the neonate; exosomes.
Conflict of interest statement
A competing interest is identified because the study was funded by an independent research grant award from United Therapeutics and Boston Children’s Hospital at Harvard University to the University of Utah for this study to be done in K. H. Albertine’s lamb intensive care unit. None of the other authors has any conflicts of interest, financial or otherwise, to disclose.
Figures
References
-
- Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sánchez PJ, Van Meurs KP, Wyckoff M, Das A, Hale EC, Ball MB, Newman NS, Schibler K, Poindexter BB, Kennedy KA, Cotten CM, Watterberg KL, D'Angio CT, DeMauro SB, Truog WE, Devaskar U, Higgins RD; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 314: 1039–1051, 2015. doi:10.1001/jama.2015.10244. - DOI - PMC - PubMed
-
- Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sánchez PJ, O'Shea TM, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID 3rd, Watterberg KL, Saha S, Das A, Higgins RD; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126: 443–456, 2010. doi:10.1542/peds.2009-2959. - DOI - PMC - PubMed
-
- Bose C, Van Marter LJ, Laughon M, O'Shea TM, Allred EN, Karna P, Ehrenkranz RA, Boggess K, Leviton A; Extremely Low Gestational Age Newborn Study Investigators. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 124: e450–e458, 2009. doi:10.1542/peds.2008-3249. - DOI - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
