Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;28(6):2409-2418.
doi: 10.26355/eurrev_202403_35748.

Analysis of risk factors affecting the prognosis of patients with sepsis and construction of nomogram prediction model

Affiliations
Free article

Analysis of risk factors affecting the prognosis of patients with sepsis and construction of nomogram prediction model

S-H Cui et al. Eur Rev Med Pharmacol Sci. 2024 Mar.
Free article

Abstract

Objective: This study analyzed the clinical data of 200 sepsis patients, exploring the risk factors that affect patient prognosis and providing the basis for clinically targeted intervention to improve patient prognosis.

Patients and methods: 200 septic patients were admitted to Yulin Second Hospital, and they were divided into a survival group of 151 patients and a death group of 49 patients, according to their clinical outcomes on admission. The relevant clinical parameters within 24 h of admission were collected, and the independent risk factors affecting the prognosis of septic patients were analyzed by multivariate Logistic regression. R language 4.21 software was used to construct a nomogram prediction model. The receiver operating characteristic curve was used to evaluate the discrimination of the nomogram model, and decline curve analysis was drawn to evaluate the effectiveness of the model.

Results: In the nomogram prediction model, age, the Acute Physiology and Chronic Health Scoring System Domain (APACHE II) score, the Sequential Organ Failure Assessment (SOFA) score, C-reactive protein (CRP), total bilirubin, albumin (Alb), urea nitrogen, creatinine, and lactate (Lac) were independent risk factors for death in septic patients. The area under the receiver operating characteristic (ROC) curve for predicting the prognosis of septic patients was 0.597-1.000, and the calibration curve tends to be the ideal curve. The model had good discrimination and calibration and had high accuracy in evaluating septic patients. The modeling curves in the decline curve analysis (DCA) were all above the two extreme curves, which had good clinical value.

Conclusions: Nine clinical variables have been found to be independent risk factors for death in septic patients. The prediction model established based on this has good accuracy, discrimination, and consistency in predicting the prognosis of sepsis patients.

PubMed Disclaimer