Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 16;14(7):1848-1853.
doi: 10.1039/d3cy01702h. eCollection 2024 Apr 2.

Formoxyboranes as hydroborane surrogates for the catalytic reduction of carbonyls through transfer hydroboration

Affiliations

Formoxyboranes as hydroborane surrogates for the catalytic reduction of carbonyls through transfer hydroboration

Gabriel Durin et al. Catal Sci Technol. .

Abstract

A new class of Lewis base stabilized formoxyboranes demonstrates the feasibility of catalytic transfer hydroboration. In the presence of a ruthenium catalyst, they have shown broad applicability for reducing carbonyl compounds. Various borylated alcohols are obtained in high selectivity and yields up to 99%, tolerating several functional groups. Computational studies enabled to propose a mechanism for this transformation, revealing the role of the ruthenium catalyst and the absence of hydroborane intermediates.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Examples of hydroboration and transfer hydroboration of unsaturated functional groups.
Scheme 2
Scheme 2. Synthesis of formoxyboranes from hydroboranes and formic acid.
Scheme 3
Scheme 3. Synthesis of formoxyboranes from chloroborane and sodium formate.
Scheme 4
Scheme 4. Scope of the catalytic transfer hydroboration of carbonyl compounds.
Scheme 5
Scheme 5. Plausible precatalyst pathway from 2a to 2b (top) and precatalyst test with 2b (bottom).
Scheme 6
Scheme 6. Computed mechanism for the catalytic transfer of hydroboration of acetophenone 3a with 1b catalyzed by Ia at B3LYP-D3/Def2SVP level of theory and SMD model to account for solvent effect (C6D6).

References

    1. Yamakawa T. Masaki M. Nohira H. Bull. Chem. Soc. Jpn. 1991;64:2730–2734. doi: 10.1246/bcsj.64.2730. - DOI
    2. Prasad A. S. B. Kanth J. V. B. Periasamy M. Tetrahedron. 1992;48:4623–4628. doi: 10.1016/S0040-4020(01)81236-9. - DOI
    3. Brown H. C. Kanth J. V. B. Zaidlewicz M. J. Org. Chem. 1998;63:5154–5163. doi: 10.1021/jo980362d. - DOI
    4. Brown H. C. Ravindran N. J. Am. Chem. Soc. 1976;98:1785–1798. doi: 10.1021/ja00423a025. - DOI
    5. Chakraborty S. Zhang J. Krause J. A. Guan H. J. Am. Chem. Soc. 2010;132:8872–8873. doi: 10.1021/ja103982t. - DOI - PubMed
    6. Chong C. C. Kinjo R. ACS Catal. 2015;5:3238–3259. doi: 10.1021/acscatal.5b00428. - DOI
    7. Barger C. J. Motta A. Weidner V. L. Lohr T. L. Marks T. J. ACS Catal. 2019;9:9015–9024. doi: 10.1021/acscatal.9b02605. - DOI
    1. Brotherton R. J., Weber C. J., Guibert C. R. and Little J. L., Boron compounds, in Ullmann's encyclopedia of industrial chemistry, John Wiley & Sons, Ltd, Ed., 2000, https://onlinelibrary.wiley.com/doi/10.1002/14356007.a04_309
    1. Studer A. Amrein S. Angew. Chem., Int. Ed. 2000;39:3080–3082. doi: 10.1002/1521-3773(20000901)39:17<3080::AID-ANIE3080>3.0.CO;2-E. - DOI - PubMed
    2. Amrein S. Timmermann A. Studer A. Org. Lett. 2001;3:2357–2360. doi: 10.1021/ol016160c. - DOI - PubMed
    3. Amrein S. Studer A. Helv. Chim. Acta. 2002;85:3559–3574. doi: 10.1002/1522-2675(200210)85:10<3559::AID-HLCA3559>3.0.CO;2-6. - DOI
    4. Simonneau A. Oestreich M. Angew. Chem., Int. Ed. 2013;52:11905–11907. doi: 10.1002/anie.201305584. - DOI - PubMed
    5. Keess S. Simonneau A. Oestreich M. Organometallics. 2015;34:790–799. doi: 10.1021/om501284a. - DOI
    6. Chauvier C. Thuery P. Cantat T. Angew. Chem., Int. Ed. 2016;55:14096–14100. doi: 10.1002/anie.201607201. - DOI - PubMed
    1. Wang D. Astruc D. Chem. Rev. 2015;115:6621–6686. doi: 10.1021/acs.chemrev.5b00203. - DOI - PubMed
    2. Nie R. F. Tao Y. W. Nie Y. Q. Lu T. L. Wang J. S. Zhang Y. S. Lu X. Y. Xu C. C. ACS Catal. 2021;11:1071–1095. doi: 10.1021/acscatal.0c04939. - DOI
    3. Wei D. Sang R. Sponholz P. Junge H. Beller M. Nat. Energy. 2022;7:438–447. doi: 10.1038/s41560-022-01019-4. - DOI
    1. Farlow M. W. Adkins H. J. Am. Chem. Soc. 2002;57:2222–2223. doi: 10.1021/ja01314a054. - DOI
    2. Graf E. Leitner W. J. Chem. Soc., Chem. Commun. 1992:623–624. doi: 10.1039/C39920000623. - DOI
    3. Jessop P. G. Ikariya T. Noyori R. Chem. Rev. 1995;95:259–272. doi: 10.1021/cr00034a001. - DOI
    4. Wang W. H. Himeda Y. Muckerman J. T. Manbeck G. F. Fujita E. Chem. Rev. 2015;115:12936–12973. doi: 10.1021/acs.chemrev.5b00197. - DOI - PubMed
    5. Kang P. Cheng C. Chen Z. Schauer C. K. Meyer T. J. Brookhart M. J. Am. Chem. Soc. 2012;134:5500–5503. doi: 10.1021/ja300543s. - DOI - PubMed
    6. Chen L. Guo Z. Wei X. G. Gallenkamp C. Bonin J. Anxolabehere-Mallart E. Lau K. C. Lau T. C. Robert M. J. Am. Chem. Soc. 2015;137:10918–10921. doi: 10.1021/jacs.5b06535. - DOI - PubMed
    7. Taheri A. Berben L. A. Chem. Commun. 2016;52:1768–1777. doi: 10.1039/C5CC09041E. - DOI - PubMed
    8. Francke R. Schille B. Roemelt M. Chem. Rev. 2018;118:4631–4701. doi: 10.1021/acs.chemrev.7b00459. - DOI - PubMed
    9. Bullock R. M. Das A. K. Appel A. M. Chem. – Eur. J. 2017;23:7626–7641. doi: 10.1002/chem.201605066. - DOI - PubMed
    10. Gao S. Lin Y. Jiao X. Sun Y. Luo Q. Zhang W. Li D. Yang J. Xie Y. Nature. 2016;529:68–71. doi: 10.1038/nature16455. - DOI - PubMed

LinkOut - more resources