Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Apr;82(8):2349-53.
doi: 10.1073/pnas.82.8.2349.

Nature of the charged-group effect on the stability of the C-peptide helix

Comparative Study

Nature of the charged-group effect on the stability of the C-peptide helix

K R Shoemaker et al. Proc Natl Acad Sci U S A. 1985 Apr.

Abstract

The residues responsible for the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A) have been identified by chemical synthesis of analogues and measurement of their helix-forming properties. Each of the residues ionizing between pH 2 and pH 8 has been replaced separately by an uncharged residue. Protonation of Glu-2- is responsible for the sharp decrease in helix stability between pH 5 and pH 2, and deprotonation of His-12+ causes a similar decrease between pH 5 and pH 8. Glu-9- is not needed for helix stability. The results cannot be explained by the Zimm-Bragg model and host-guest data for alpha-helix formation, which predict that the stability of the C-peptide helix should increase when Glu-2- is protonated or when His-12+ is deprotonated. Moreover, histidine+ is a strong helix-breaker in host-guest studies. In proteins, acidic and basic residues tend to occur at opposite ends of alpha-helices: acidic residues occur preferentially near the NH2-terminal end and basic residues near the COOH-terminal end. A possible explanation, based on a helix dipole model, has been given [Blagdon, D. E. & Goodman, M. (1975) Biopolymers 14, 241-245]. Our results are consistent with the helix dipole model and they support the suggestion that the distribution of charged residues in protein helices reflects the helix-stabilizing propensity of those residues. Because Glu-9 is not needed for helix stability, a possible Glu-9-...His-12+ salt bridge does not contribute significantly to helix stability. The role of a possible Glu-2-...Arg-10+ salt bridge has not yet been evaluated. A charged-group effect on alpha-helix stability in water has also been observed in a different peptide system [Ihara, S., Ooi, T. & Takahashi, S. (1982) Biopolymers 21, 131-145]: block copolymers containing (Ala)20 and (Glu)20 show partial helix formation at low temperatures, pH 7.5, where the glutamic acid residues are ionized. (Glu)20(Ala)20Phe forms a helix that is markedly more stable than (Ala)20(Glu)20Phe. The results are consistent with a helix dipole model.

PubMed Disclaimer

References

    1. Biochemistry. 1971 Feb 2;10(3):470-6 - PubMed
    1. Biochemistry. 1974 Jan 15;13(2):211-22 - PubMed
    1. J Mol Biol. 1975 Jul 15;95(4):497-511 - PubMed
    1. Biopolymers. 1975 Jan;14(1):241-5 - PubMed
    1. Adv Biophys. 1976;:1-63 - PubMed

Publication types

LinkOut - more resources