Clustered de novo start-loss variants in GLUL result in a developmental and epileptic encephalopathy via stabilization of glutamine synthetase
- PMID: 38579670
- PMCID: PMC11023914
- DOI: 10.1016/j.ajhg.2024.03.005
Clustered de novo start-loss variants in GLUL result in a developmental and epileptic encephalopathy via stabilization of glutamine synthetase
Abstract
Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.
Keywords: GLUL; degron motif; epileptic encephalopathies; glutamine metabolism; glutamine synthetase.
Copyright © 2024 American Society of Human Genetics. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures





Similar articles
-
Ornithine Transcarbamylase Deficiency.2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24006547 Free Books & Documents. Review.
-
Citrullinemia Type I.2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
-
Idiopathic (Genetic) Generalized Epilepsy.2024 Feb 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Feb 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31536218 Free Books & Documents.
-
Cestode larvae excite host neuronal circuits via glutamatergic signalling.Elife. 2025 Jul 4;12:RP88174. doi: 10.7554/eLife.88174. Elife. 2025. PMID: 40613653 Free PMC article.
-
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001911. doi: 10.1002/14651858.CD001911.pub3. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2019 Jul 18;7:CD001911. doi: 10.1002/14651858.CD001911.pub4. PMID: 28240353 Free PMC article. Updated.
Cited by
-
Glutamine Synthetase: Diverse Regulation and Functions of an Ancient Enzyme.Biochemistry. 2025 Feb 4;64(3):547-554. doi: 10.1021/acs.biochem.4c00763. Epub 2025 Jan 22. Biochemistry. 2025. PMID: 39844577 Free PMC article. Review.
-
UBR-1 enzyme network regulates glutamate homeostasis to affect organismal behavior and developmental viability.bioRxiv [Preprint]. 2025 Jul 30:2025.07.28.666006. doi: 10.1101/2025.07.28.666006. bioRxiv. 2025. PMID: 40766417 Free PMC article. Preprint.
-
Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection.Am J Hum Genet. 2025 Feb 6;112(2):428-449. doi: 10.1016/j.ajhg.2025.01.002. Epub 2025 Jan 24. Am J Hum Genet. 2025. PMID: 39862869 Free PMC article.
-
Prediction of human pathogenic start loss variants based on self-supervised contrastive learning.BMC Biol. 2025 Aug 8;23(1):250. doi: 10.1186/s12915-025-02348-y. BMC Biol. 2025. PMID: 40781627 Free PMC article.
-
Male proband with intractable seizures and a de novo start-codon-disrupting variant in GLUL.HGG Adv. 2025 Apr 10;6(2):100419. doi: 10.1016/j.xhgg.2025.100419. Epub 2025 Feb 21. HGG Adv. 2025. PMID: 39985170 Free PMC article.
References
-
- Palladino A.A., Stanley C.A. The hyperinsulinism/hyperammonemia syndrome. Rev. Endocr. Metab. Disord. 2010;11:171–178. - PubMed
-
- Tsuchida N., Hamada K., Shiina M., Kato M., Kobayashi Y., Tohyama J., Kimura K., Hoshino K., Ganesan V., Teik K.W., et al. GRIN2D variants in three cases of developmental and epileptic encephalopathy. Clin. Genet. 2018;94:538–547. - PubMed
-
- Li D., Yuan H., Ortiz-Gonzalez X.R., Marsh E.D., Tian L., McCormick E.M., Kosobucki G.J., Chen W., Schulien A.J., Chiavacci R., et al. GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am. J. Hum. Genet. 2016;99:802–816. - PMC - PubMed
-
- Rumping L., Tessadori F., Pouwels P.J.W., Vringer E., Wijnen J.P., Bhogal A.A., Savelberg S.M.C., Duran K.J., Bakkers M.J.G., Ramos R.J.J., et al. GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Hum. Mol. Genet. 2019;28:96–104. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous