Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1:406:132019.
doi: 10.1016/j.ijcard.2024.132019. Epub 2024 Apr 3.

Prediction of adverse cardiovascular events in children using artificial intelligence-based electrocardiogram

Affiliations

Prediction of adverse cardiovascular events in children using artificial intelligence-based electrocardiogram

Yoshitsugu Nogimori et al. Int J Cardiol. .

Abstract

Background: Convolutional neural networks (CNNs) have emerged as a novel method for evaluating heart failure (HF) in adult electrocardiograms (ECGs). However, such CNNs are not applicable to pediatric HF, where abnormal anatomy of congenital heart defects plays an important role. ECG-based CNNs reflecting neurohormonal activation (NHA) may be a useful marker of pediatric HF. This study aimed to develop and validate an ECG-derived marker of pediatric HF that reflects the risk of future cardiovascular events.

Methods: Based on 21,378 ECGs from 8324 children, a CNN was trained using B-type natriuretic peptide (BNP) and the occurrence of major adverse cardiovascular events (MACEs). The output of the model, or the electrical heart failure indicator (EHFI), was compared with the BNP regarding its ability to predict MACEs in 813 ECGs from 295 children.

Results: EHFI achieved a better area under the curve than BNP in predicting MACEs within 180 days (0.826 versus 0.691, p = 0.03). On Cox univariable analyses, both EHFI and BNP were significantly associated with MACE (log10 EHFI: hazard ratio [HR] = 16.5, p < 0.005 and log10 BNP: HR = 4.4, p < 0.005). The time-dependent average precisions of EHFI in predicting MACEs were 32.4%-67.9% and 1.6-7.5-fold higher than those of BNP in the early period. Additionally, the MACE rate increased monotonically with EHFI, whereas the rate peaked at approximately 100 pg/mL of BNP and decreased in the higher range.

Conclusions: ECG-derived CNN is a novel marker of HF with different prognostic potential from BNP. CNN-based ECG analysis may provide a new guide for assessing pediatric HF.

Keywords: Artificial intelligence; Congenital heart disease; Electrocardiogram; Heart failure; Neural network; Neurohormonal activation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

Substances

LinkOut - more resources