Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun 10;260(11):7035-41.

Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung

  • PMID: 3858278
Free article

Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung

K Watanabe et al. J Biol Chem. .
Free article

Abstract

Prostaglandin F synthetase from bovine lung was purified 540-fold to apparent homogeneity, as assessed by polyacrylamide gel electrophoreses and ultracentrifugation. The purified enzyme proved to be a monomeric protein with a molecular weight of about 30,500. The enzyme catalyzed not only the reduction of the 11-keto group of prostaglandin D2 but also the reduction of 9,11-endoperoxide of prostaglandin H2 and various carbonyl compounds (e.g. phenanthrenequinone). Experiments using column chromatography, polyacrylamide gel electrophoreses, immunotitration using antibody against the purified enzyme, and heat treatment indicated that three enzyme activities resided in a single protein. Although phenanthrenequinone and prostaglandin D2 competitively inhibited the prostaglandin D2 and phenanthrenequinone reductase activities, respectively, these two substrates were all but ineffective on the prostaglandin H2 (at the Km value) reductase activity up to 14-fold of those Km values. These results suggest that a single enzyme protein purified from the bovine lung catalyzes the reduction of prostaglandin D2, prostaglandin H2, and various carbonyl compounds and that prostaglandin D2 and prostaglandin H2 are metabolized at two different active sites, yielding prostaglandin F2 alpha as the reaction product.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources