Giant energy storage and power density negative capacitance superlattices
- PMID: 38593860
- DOI: 10.1038/s41586-024-07365-5
Giant energy storage and power density negative capacitance superlattices
Abstract
Dielectric electrostatic capacitors1, because of their ultrafast charge-discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems2-5. Moreover, state-of-the-art miniaturized electrochemical energy storage systems-microsupercapacitors and microbatteries-currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness2,3,6, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO2-ZrO2-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO2-ZrO2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect7-12, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm-3) (ref. 13). Second, to increase total energy storage, antiferroelectric superlattice engineering14 scales the energy storage performance beyond the conventional thickness limitations of HfO2-ZrO2-based (anti)ferroelectricity15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm-2 and 300 kW cm-2, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity-speed trade-off across the electrostatic-electrochemical energy storage hierarchy1,16. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors5, which can unlock substantial energy storage and power delivery performance for electronic microsystems17-19.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Similar articles
-
Superhigh energy storage density on-chip capacitors with ferroelectric Hf0.5Zr0.5O2/antiferroelectric Hf0.25Zr0.75O2 bilayer nanofilms fabricated by plasma-enhanced atomic layer deposition.Nanoscale Adv. 2022 Sep 27;4(21):4648-4657. doi: 10.1039/d2na00427e. eCollection 2022 Oct 25. Nanoscale Adv. 2022. PMID: 36341289 Free PMC article.
-
Ultrahigh dielectric permittivity in Hf0.5Zr0.5O2 thin-film capacitors.Nat Commun. 2025 Mar 18;16(1):2679. doi: 10.1038/s41467-025-57963-8. Nat Commun. 2025. PMID: 40102435 Free PMC article.
-
3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance.Small. 2019 Jul;15(27):e1901224. doi: 10.1002/smll.201901224. Epub 2019 May 16. Small. 2019. PMID: 31095888
-
Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films.Nanoscale. 2020 Aug 28;12(33):17165-17184. doi: 10.1039/d0nr04479b. Nanoscale. 2020. PMID: 32789414 Review.
-
Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review.Materials (Basel). 2021 Dec 18;14(24):7854. doi: 10.3390/ma14247854. Materials (Basel). 2021. PMID: 34947446 Free PMC article. Review.
Cited by
-
Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor.Nanomicro Lett. 2024 Aug 9;16(1):264. doi: 10.1007/s40820-024-01461-x. Nanomicro Lett. 2024. PMID: 39120835 Free PMC article. Review.
-
Harnessing local inhomogeneity for enhanced dielectric energy storage.Nat Commun. 2025 Jul 7;16(1):6236. doi: 10.1038/s41467-025-61250-x. Nat Commun. 2025. PMID: 40624010 Free PMC article.
-
Dipoles disordered by design to increase capacity of energy-storage devices.Nature. 2025 Jan;637(8048):1060-1062. doi: 10.1038/d41586-025-00085-4. Nature. 2025. PMID: 39880990 No abstract available.
-
Ultrahigh Dielectric Permittivity of a Micron-Sized Hf0.5Zr0.5O2 Thin-Film Capacitor After Missing of a Mixed Tetragonal Phase.Nanomicro Lett. 2025 Jul 18;18(1):6. doi: 10.1007/s40820-025-01841-x. Nanomicro Lett. 2025. PMID: 40679567 Free PMC article.
-
Superior Capacitive Energy Storage of BaTiO3-Based Polymorphic Relaxor Ferroelectrics Engineered by Mesoscopically Chemical Homogeneity.Adv Sci (Weinh). 2025 Jul;12(27):e2502916. doi: 10.1002/advs.202502916. Epub 2025 May 24. Adv Sci (Weinh). 2025. PMID: 40411412 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Miscellaneous