Medical Microrobots
- PMID: 38594937
- DOI: 10.1146/annurev-bioeng-081523-033131
Medical Microrobots
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Keywords: magnetic microrobot; medical imaging; microrobot; minimally invasive surgery; targeted therapy; ultrasound.
Similar articles
-
Microrobots for minimally invasive medicine.Annu Rev Biomed Eng. 2010 Aug 15;12:55-85. doi: 10.1146/annurev-bioeng-010510-103409. Annu Rev Biomed Eng. 2010. PMID: 20415589 Review.
-
Inner Workings: Medical microrobots have potential in surgery, therapy, imaging, and diagnostics.Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12356-12358. doi: 10.1073/pnas.1716034114. Proc Natl Acad Sci U S A. 2017. PMID: 29162739 Free PMC article. No abstract available.
-
Mobility experiments with microrobots for minimally invasive intraocular surgery.Invest Ophthalmol Vis Sci. 2013 Apr 23;54(4):2853-63. doi: 10.1167/iovs.13-11825. Invest Ophthalmol Vis Sci. 2013. PMID: 23518764
-
Miniaturized soft growing robots for minimally invasive surgeries: challenges and opportunities.Prog Biomed Eng (Bristol). 2025 Apr 22;7(3). doi: 10.1088/2516-1091/adc9ea. Prog Biomed Eng (Bristol). 2025. PMID: 40194546 Review.
-
Milestones for autonomous in vivo microrobots in medical applications.Surgery. 2021 Apr;169(4):755-758. doi: 10.1016/j.surg.2020.10.040. Epub 2020 Dec 11. Surgery. 2021. PMID: 33309617 Review.
Cited by
-
Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery.Biomimetics (Basel). 2024 Sep 16;9(9):559. doi: 10.3390/biomimetics9090559. Biomimetics (Basel). 2024. PMID: 39329581 Free PMC article.
-
A Novel Variable Volume Capillary Microgripper for Micromanipulation in Aqueous Media.Micromachines (Basel). 2025 May 27;16(6):633. doi: 10.3390/mi16060633. Micromachines (Basel). 2025. PMID: 40572353 Free PMC article.
-
Chemotactic navigation in robotic swimmers via reset-free hierarchical reinforcement learning.Nat Commun. 2025 Jul 1;16(1):5441. doi: 10.1038/s41467-025-60646-z. Nat Commun. 2025. PMID: 40593554 Free PMC article.
-
Metareview: a survey of active matter reviews.Eur Phys J E Soft Matter. 2025 Mar 4;48(3):12. doi: 10.1140/epje/s10189-024-00466-z. Eur Phys J E Soft Matter. 2025. PMID: 40035927 Free PMC article. Review.
-
Model-based reinforcement learning for ultrasound-driven autonomous microrobots.Nat Mach Intell. 2025;7(7):1076-1090. doi: 10.1038/s42256-025-01054-2. Epub 2025 Jun 26. Nat Mach Intell. 2025. PMID: 40709099 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources