Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Apr 23;96(16):6097-6105.
doi: 10.1021/acs.analchem.3c04938. Epub 2024 Apr 10.

Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry

Affiliations
Review

Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry

Cameron S Movassaghi et al. Anal Chem. .

Abstract

This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Predictive drift modeling generalizes in vivo. Reproduced from Meunier, C. J.; McCarty, G. S.; Sombers, L. A. Anal. Chem. 2019, 91, 7319–7327 (ref (24)). Copyright 2019, American Chemical Society.
Figure 2
Figure 2
(A) Test set performance using an FSCV-PCR model trained on background-subtracted voltammograms for varying dopamine concentrations at pH 7.4 and (B) versus varying pH at constant dopamine (0 nM). (C,D) The same test set performance using an FSCV-elastic net model trained on nonbackground-subtracted data. Reproduced from Kishida, K. T.; Saez, I.; Lohrenz, T.; Witcher, M. R.; Laxton, A. W.; Tatter, S. B.; White, J. P.; Ellis, T. L.; Phillips, P. E. M.; Montague, P. R. Proc. Natl. Acad. Sci. U.S.A.2016, 113, 200–205 (ref (30)). https://creativecommons.org/licenses/by/4.0/.
Figure 3
Figure 3
Model loadings analysis by analyte for rapid pulse voltammetry. Large loadings for dopamine and serotonin in the early portions of specific steps indicate the model is gaining analyte-specific information from portions of the current traces dominated by capacitive current. Reproduced from Movassaghi, C. S.; Perrotta, K. A.; Yang, H.; Iyer, R.; Cheng, X.; Dagher, M.; Fillol, M. A.; Andrews, A. M. Anal. Bioanal. Chem. 2021, 413, 6747–6767 (ref (11)). http://creativecommons.org/licenses/by/4.0/.
Figure 4
Figure 4
Dopamine (DA) predictions from FSCV data containing 120 mM K+ for an actual value of 500 nM dopamine. Reproduced from Johnson, J. A.; Hobbs, C. N.; Wightman, R. M. Anal. Chem. 2017, 89, 6166–6174 (ref (21)). Copyright 2017, American Chemical Society.
Figure 5
Figure 5
Analyte-specific equivalent circuit voltammograms for dopamine (DA), norepinephrine (NE), and epinephrine (EP). Reproduced from Park, C.; Hwang, S.; Kang, Y.; Sim, J.; Cho, H. U.; Oh, Y.; Shin, H.; Kim, D. H.; Blaha, C. D.; Bennet, K. E. Anal. Chem. 2021, 93, 15861–15869 (ref (14)). Copyright 2021, American Chemical Society.
Figure 6
Figure 6
Analyte (dopamine (DA), norepinephrine (NE), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA)) predictions from randomized pulse voltammetry. Reproduced with permission from Montague, P. R.; Lohrenz, T.; White, J.; Moran, R. J.; Kishida, K. T. bioRxiv Preprint, 2019 (ref (65)). Copyright 2019, The Authors.

References

    1. Millar J.; Stamford J. A.; Kruk Z. L.; Wightman R. M. Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur. J. Pharmacol. 1985, 109 (3), 341–348. 10.1016/0014-2999(85)90394-2. - DOI - PubMed
    1. Baur J. E.; Kristensen E. W.; May L. J.; Wiedemann D. J.; Wightman R. M. Fast-scan voltammetry of biogenic amines. Anal. Chem. 1988, 60 (13), 1268–1272. 10.1021/ac00164a006. - DOI - PubMed
    1. Venton B. J.; Cao Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 2020, 145 (4), 1158–1168. 10.1039/C9AN01586H. - DOI - PMC - PubMed
    1. Kawagoe K. T.; Zimmerman J. B.; Wightman R. M. Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods 1993, 48 (3), 225–240. 10.1016/0165-0270(93)90094-8. - DOI - PubMed
    1. Atcherley C. W.; Laude N. D.; Parent K. L.; Heien M. L. Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir 2013, 29 (48), 14885–92. 10.1021/la402686s. - DOI - PubMed