MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators
- PMID: 38598715
- PMCID: PMC11325951
- DOI: 10.1021/acs.chemrestox.3c00398
MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators
Abstract
Xenobiotic metabolism is a key consideration in evaluating the hazards and risks posed by environmental chemicals. A number of software tools exist that are capable of simulating metabolites, but each reports its predictions in a different format and with varying levels of detail. This makes comparing the performance and coverage of the tools a practical challenge. To address this shortcoming, we developed a metabolic simulation framework called MetSim, which comprises three main components. A graph-based schema was developed to allow metabolism information to be harmonized. The schema was implemented in MongoDB to store and retrieve metabolic graphs for subsequent analysis. MetSim currently includes an application programming interface for four metabolic simulators: BioTransformer, the OECD Toolbox, EPA's chemical transformation simulator (CTS), and tissue metabolism simulator (TIMES). Lastly, MetSim provides functions to help evaluate simulator performance for specific data sets. In this study, a set of 112 drugs with 432 reported metabolites were compiled, and predictions were made using the 4 simulators. Fifty-nine of the 112 drugs were taken from the Small Molecule Pathway Database, with the remainder sourced from the literature. The human models within BioTransformer and CTS (Phase I only) and the rat models within TIMES and the OECD Toolbox (Phase I only) were used to make predictions for the chemicals in the data set. The recall and precision (recall, precision) ranked in order of highest recall for each individual tool were CTS (0.54, 0.017), BioTransformer (0.50, 0.008), Toolbox in vitro (0.40, 0.144), TIMES in vivo (0.40, 0.133), Toolbox in vivo (0.40, 0.118), and TIMES in vitro (0.39, 0.128). Combining all of the model predictions together increased the overall recall (0.73, 0.008). MetSim enabled insights into the performance and coverage of in silico metabolic simulators to be more efficiently derived, which in turn should aid future efforts to evaluate other data sets.
Figures
References
-
- EPA, U. EPA Finalizes Guidance to Waive Toxicity Tests on Animal Skin https://www.epa.gov/newsreleases/epa-finalizes-guidance-waive-toxicity-t... (accessed 10/25/2023).
-
- EPA, U. EPA New Approach Methods Work Plan: Reducing Use of Vertebrate Animals in Chemical Testing https://www.epa.gov/chemical-research/epa-new-approach-methods-work-plan... (accessed 10/25/2023).
-
- Weinberg N; Nelson D; Byrd J, Insights from TSCA Reform: a Case for Identifying New Emerging Contaminants. Current Pollution Reports 2019, 5, 215–227.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
