Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May;17(5):929-937.
doi: 10.1016/j.jiph.2024.03.027. Epub 2024 Mar 27.

Evaluation of the synergistic effect of eravacycline and tigecycline against carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae

Affiliations
Free article

Evaluation of the synergistic effect of eravacycline and tigecycline against carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae

Yu-Shan Huang et al. J Infect Public Health. 2024 May.
Free article

Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a substantial healthcare challenge. This study assessed the in vitro efficacy of selected antibiotic combinations against CRKP infections.

Methods: Our research involved the evaluation of 40 clinical isolates of CRKP, with half expressing Klebsiella pneumoniae carbapenemase (KPC) and half producing Metallo-β-lactamase (MBL), two key enzymes contributing to carbapenem resistance. We determined the minimum inhibitory concentrations (MICs) of four antibiotics: eravacycline, tigecycline, polymyxin-B, and ceftazidime/avibactam. Synergistic interactions between these antibiotic combinations were examined using checkerboard and time-kill analyses.

Results: We noted significant differences in the MICs of ceftazidime/avibactam between KPC and MBL isolates. Checkerboard analysis revealed appreciable synergy between combinations of tigecycline (35%) or eravacycline (40%) with polymyxin-B. The synergy rates for the combination of tigecycline or eravacycline with polymyxin-B were similar among the KPC and MBL isolates. These combinations maintained a synergy rate of 70.6% even against polymyxin-B resistant isolates. In contrast, combinations of tigecycline (5%) or eravacycline (10%) with ceftazidime/avibactam showed significantly lower synergy than combinations with polymyxin-B (P < 0.001 and P = 0.002, respectively). Among the MBL CRKP isolates, only one exhibited synergy with eravacycline or tigecycline and ceftazidime/avibactam combinations, and no synergistic activity was identified in the time-kill analysis for these combinations. The combination of eravacycline and polymyxin-B demonstrated the most promising synergy in the time-kill analysis.

Conclusion: This study provides substantial evidence of a significant synergy when combining tigecycline or eravacycline with polymyxin-B against CRKP strains, including those producing MBL. These results highlight potential therapeutic strategies against CRKP infections.

Keywords: Antibiotics; Carbapenem-resistant; Klebsiella pneumoniae; Synergistic effect; Therapy.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources