Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985:112:96-100.
doi: 10.3109/00365528509092218.

Pancreatic duct and microvascular permeability to macromolecules. The relation to acute pancreatitis

Pancreatic duct and microvascular permeability to macromolecules. The relation to acute pancreatitis

H A Reber. Scand J Gastroenterol Suppl. 1985.

Abstract

In a model of acute pancreatitis which requires that pancreatic enzymes leak from a permeable duct, we studied the role of intravenous enterokinase (195,000 daltons) in pancreatic enzyme activation. Anesthetized cats were given intravenous 16,16-dimethyl prostaglandin E2 to increase pancreatic blood flow and microvascular permeability. In some animals the permeability of the pancreatic duct was increased by perfusion of the duct with glycodeoxycholic acid (7.5 mM). Endogenous enzyme secretion was stimulated by IV CCK and secretin. Some cats also received enterokinase intravenously. Those animals that received PGE2, glycodeoxycholate, and enterokinase all developed pancreatitis. When any of these agents were not given the pancreases appeared normal. These findings were consistent with the hypothesis that intravenous enterokinase leaked from small pancreatic blood vessels into the pancreatic parenchyma and/or ducts where activation of pancreatic enzymes occurred. The development of pancreatitis appeared to require an increase in both microvascular and ductal permeability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources