Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun 1:927:172319.
doi: 10.1016/j.scitotenv.2024.172319. Epub 2024 Apr 9.

Carbon emission prediction models: A review

Affiliations
Review

Carbon emission prediction models: A review

Yukai Jin et al. Sci Total Environ. .

Abstract

Amidst growing concerns over the greenhouse effect, especially its consequential impacts, establishing effective Carbon Emission Prediction Models (CEPMs) to comprehend and predict CO2 emission trends is imperative for climate change mitigation. A review of 147 Carbon Emission Prediction Model (CEPM) studies revealed three predominant functions-prediction, optimization, and prediction factor selection. Statistical models, comprising 75 instances, were the most prevalent among prediction models, followed by neural network models at 21.8 %. The consistent rise in neural network model usage, particularly feedforward architectures, was observed from 2019 to 2022. A majority of CEPMs incorporated optimized approaches, with 94.4 % utilizing metaheuristic models. Parameter optimization was the primary focus, followed by structure optimization. Prediction factor selection models, employing Grey Relational Analysis (GRA) and Principal Component Analysis (PCA) for statistical and machine learning models, respectively, filtered factors effectively. Scrutinizing accuracy, pre-optimized CEPMs exhibited varied performance, Root Mean Square Error (RMSE) values spanned from 0.112 to 1635 Mt, while post-optimization led to a notable improvement, the minimum RMSE reached 0.0003 Mt, and the maximum was 95.14 Mt. Finally, we summarized the pros and cons of existing models, classified and counted the factors that influence carbon emissions, clarified the research objectives in CEPM and assessed the applied model evaluation methods and the spatial and temporal scales of existing research.

Keywords: Artificial intelligence; Carbon emission; Climate change mitigation; Machine learning; Neural network; Prediction model.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources