Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators
- PMID: 38604170
- DOI: 10.1016/j.cmet.2024.03.009
Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators
Abstract
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
Keywords: computational tool; senescence; senescence identification; senescence quantification; senescence regulators; single cell; trajectory.
Copyright © 2024 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Similar articles
-
SenPred: a single-cell RNA sequencing-based machine learning pipeline to classify deeply senescent dermal fibroblast cells for the detection of an in vivo senescent cell burden.Genome Med. 2025 Jan 14;17(1):2. doi: 10.1186/s13073-024-01418-0. Genome Med. 2025. PMID: 39810225 Free PMC article.
-
Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas.Mol Cells. 2021 Mar 31;44(3):136-145. doi: 10.14348/molcells.2021.2239. Mol Cells. 2021. PMID: 33795532 Free PMC article. Review.
-
Identification of senescent cell subpopulations by CITE-seq analysis.Aging Cell. 2024 Nov;23(11):e14297. doi: 10.1111/acel.14297. Epub 2024 Aug 14. Aging Cell. 2024. PMID: 39143693 Free PMC article.
-
SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3.Aging (Albany NY). 2021 Sep 16;13(18):21838-21854. doi: 10.18632/aging.203560. Epub 2021 Sep 16. Aging (Albany NY). 2021. PMID: 34531331 Free PMC article.
-
The heterogeneity of cellular senescence: insights at the single-cell level.Trends Cell Biol. 2023 Jan;33(1):9-17. doi: 10.1016/j.tcb.2022.04.011. Epub 2022 May 20. Trends Cell Biol. 2023. PMID: 35599179 Free PMC article. Review.
Cited by
-
Therapeutic targeting of senescent cells in the CNS.Nat Rev Drug Discov. 2024 Nov;23(11):817-837. doi: 10.1038/s41573-024-01033-z. Epub 2024 Sep 30. Nat Rev Drug Discov. 2024. PMID: 39349637 Free PMC article. Review.
-
Premature cell senescence promotes vascular smooth muscle cell phenotypic modulation and resistance to re-differentiation.Cardiovasc Res. 2025 Aug 14;121(9):1448-1463. doi: 10.1093/cvr/cvaf102. Cardiovasc Res. 2025. PMID: 40493738 Free PMC article.
-
Senescent cells as a target for anti-aging interventions: From senolytics to immune therapies.J Transl Int Med. 2025 Mar 19;13(1):33-47. doi: 10.1515/jtim-2025-0005. eCollection 2025 Feb. J Transl Int Med. 2025. PMID: 40115034 Free PMC article.
-
A systemic effect for liver senescence.Nat Cell Biol. 2024 Dec;26(12):2016-2017. doi: 10.1038/s41556-024-01520-w. Nat Cell Biol. 2024. PMID: 39537754 Free PMC article.
-
Persistent accumulation of therapy-induced senescent cells: an obstacle to long-term cancer treatment efficacy.Int J Oral Sci. 2025 Aug 1;17(1):59. doi: 10.1038/s41368-025-00380-w. Int J Oral Sci. 2025. PMID: 40750580 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical