Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;23(7):912-919.
doi: 10.1038/s41563-024-01856-6. Epub 2024 Apr 11.

A correlated ferromagnetic polar metal by design

Affiliations

A correlated ferromagnetic polar metal by design

Jianbing Zhang et al. Nat Mater. 2024 Jul.

Abstract

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

PubMed Disclaimer

References

    1. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).
    1. Shi, Y. G. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). - PubMed
    1. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016). - PubMed
    1. Puggioni, D. & Rondinelli, J. M. Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy. Nat. Commun. 5, 3432 (2014). - PubMed
    1. Kolodiazhnyi, T., Tachibana, M., Kawaji, H., Hwang, J. & Takayama-Muromachi, E. Persistence of ferroelectricity in BaTiO3 through the insulator–metal transition. Phys. Rev. Lett. 104, 147602 (2010). - PubMed

LinkOut - more resources