Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May:174:108443.
doi: 10.1016/j.compbiomed.2024.108443. Epub 2024 Apr 9.

Cross-patch feature interactive net with edge refinement for retinal vessel segmentation

Affiliations

Cross-patch feature interactive net with edge refinement for retinal vessel segmentation

Ning Kang et al. Comput Biol Med. 2024 May.

Abstract

Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.

Keywords: Cross-patch feature interaction; Downsampling enhancement; Dual decoder; Retinal vessel segmentation; Spatial context guide.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None Declared.

Similar articles

Cited by

References

Publication types

LinkOut - more resources