Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 5;13(7):2114.
doi: 10.3390/jcm13072114.

Reliability of a New Digital Tool for Photographic Analysis in Quantifying Body Asymmetry in Scoliosis

Affiliations

Reliability of a New Digital Tool for Photographic Analysis in Quantifying Body Asymmetry in Scoliosis

Javier Pizones et al. J Clin Med. .

Abstract

Background: Advancements in non-ionizing methods for quantifying spinal deformities are crucial for assessing and monitoring scoliosis. In this study, we analyzed the observer variability of a newly developed digital tool for quantifying body asymmetry from clinical photographs. Methods: Prospective observational multicenter study. Initially, a digital tool was developed using image analysis software, calculating quantitative measures of body asymmetry. This tool was integrated into an online platform that exports data to a database. The tool calculated 10 parameters, including angles (shoulder height, axilla height, waist height, right and left waistline angles, and their difference) and surfaces of the left and right hemitrunks (shoulders, waists, pelvises, and total). Subsequently, an online training course on the tool was conducted for twelve observers not involved in its development (six research coordinators and six spine surgeons). Finally, 15 standardized back photographs of adolescent idiopathic scoliosis patients were selected from a multicenter image bank, representing various clinical scenarios (different age, gender, curve type, BMI, and pre- and postoperative images). The 12 observers measured the photographs at two different times with a three-week interval. For the second round, the images were randomly mixed. Inter- and intra-observer variabilities of the measurements were analyzed using intraclass correlation coefficients (ICCs), and reliability was measured by the standard error of measurement (SEM). Group comparisons were made using Student's t-test. Results: The mean inter-observer ICC for the ten measurements was 0.981, the mean intra-observer ICC was 0.937, and SEM was 0.3-1.3°. The parameter with the strongest inter- and intra-observer validity was the difference in waistline angles 0.994 and 0.974, respectively, while the highest variability was found with the waist height angle 0.963 and 0.845, respectively. No test-retest differences (p > 0.05) were observed between researchers (0.948 ± 0.04) and surgeons (0.925 ± 0.05). Conclusion: We developed a new digital tool integrated into an online platform demonstrating excellent reliability and inter- and intra-observer variabilities for quantifying body asymmetry in scoliosis patients from a simple clinical photograph. The method could be used for assessing and monitoring scoliosis and body asymmetry without radiation.

Keywords: body asymmetry; clinical photography; intraclass correlation coefficients; photogrammetry; reliability study; scoliosis assessment.

PubMed Disclaimer

Conflict of interest statement

The sponsors had no role in the design, execution, interpretation, or writing of the study. The authors declare no financial or commercial conflicts of interest.

Figures

Figure 1
Figure 1
Anatomical landmarks: a and a’ shoulder points; b and b’ axilla points; c and c’ waist points; the C7 spinous process and C7′ (midpoint of a vertical line thrown from C7); and d, d’ iliac crest points.
Figure 2
Figure 2
Example of the parameters obtained (angles and areas) with the digital tool assessing the clinical photograph of an AIS patient.

Similar articles

Cited by

References

    1. Bengtsson G., Fällström K., Jansson B., Nachemson A. A psychological and psychiatric investigation of the adjustment of female scoliosis patients. Acta Psychiatr. Scand. 1974;50:50–59. doi: 10.1111/j.1600-0447.1974.tb07656.x. - DOI - PubMed
    1. Smith P.L., Donaldson S., Hedden D., Alman B., Howard A., Stephens D., Wright J.G. Parents’ and patients’ perceptions of postoperative appearance in adolescent idiopathic scoliosis. Spine. 2006;31:2367–2374. doi: 10.1097/01.brs.0000240204.98960.dd. - DOI - PubMed
    1. Cochran T., Irstam L., Nachemson A. Long-term anatomic and functional changes in patients with adolescent idiopathic scoliosis treated by Harrington rod fusion. Spine. 1983;8:576–584. doi: 10.1097/00007632-198309000-00003. - DOI - PubMed
    1. Bridwell K.H., Shufflebarger H.L., Lenke L.G., Lowe T.G., Betz R.R., Bassett G.S. Parents’ and patients’ preferences and concerns in idiopathic adolescent scoliosis: A cross-sectional preoperative analysis. Spine. 2000;25:2392–2399. doi: 10.1097/00007632-200009150-00020. - DOI - PubMed
    1. Dubousset J., Charpak G., Skalli W., Kalifa G., Lazennec J.Y. EOS stereo-radiography system: Whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2007;93:141–143. doi: 10.1016/S0035-1040(07)92729-4. - DOI - PubMed

LinkOut - more resources