Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun:357:141963.
doi: 10.1016/j.chemosphere.2024.141963. Epub 2024 Apr 11.

Metal organic framework anchored onto biowaste mediated carbon material (rGO) for remediation of chromium (VI) by the photocatalytic process

Affiliations

Metal organic framework anchored onto biowaste mediated carbon material (rGO) for remediation of chromium (VI) by the photocatalytic process

S Sathish et al. Chemosphere. 2024 Jun.

Abstract

Groundwater contaminated with hexavalent chromium Cr(VI) causes serious health concerns for the ecosystem. In this study, a hybrid amino functionalized MOF@rGO nanocatalyst was produced by utilization of a biowaste mediated carbon material (reduced graphene oxide; rGO) and its surface was modified by in situ synthesis of a nanocrystalline, mixed ligand octahedral MOF containing iron metal and NH2 functional groups and the prepared composite was investigated for Cr (VI) removal. The photocatalytic degradation of Cr(VI) in aqueous solutions was carried out under UV irradiation. Using a batch mode system, the effect of numerous control variables was examined, and the process design and optimization were carried out by response surface methodology (RSM). The photocatalyst, NH2-MIL(53)-Fe@rGO, was intended to be a stable and highly effective nanocatalyst throughout the recycling tests. XRD, SEM, EDS, FTIR examinations were exploited to discover more about surface carbon embedded with MOF. 2 g/L of NH2-MIL-53(Fe)/rGO was utilized in degrading 200 mg/L of Cr(VI) in just 100 min, implying the selective efficacy of such a MOF-rGO nanocatalyst. Moreover, the Eg determinations well agreed with the predicted range of 2.7 eV, confirming its possibility to be exploited underneath visible light, via the Tauc plot. Thus, MOF anchored onto biowaste derived rGO photo-catalyst was successfully implemented in chromium degradation.

Keywords: Biowaste; Carbon surface; Solvo-thermal; Sustainable development; Synthesis; Treatment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources