Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 15;260(20):11314-21.

Biosynthesis of the major human red cell sialoglycoprotein, glycophorin A. O-Glycosylation

  • PMID: 3861610
Free article

Biosynthesis of the major human red cell sialoglycoprotein, glycophorin A. O-Glycosylation

M Jokinen et al. J Biol Chem. .
Free article

Abstract

The biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, was studied in the erythroleukemia cell line K562 with emphasis on O-glycosylation. The cells were pulse-chase labeled with [35S] methionine, and either directly immune precipitated with anti-glycophorin A antiserum or detergent-solubilized extracts first passed through columns containing the N-acetylgalactosamine-specific lectin from Helix pomatia or the glucose/mannose specific lectin from lentil beans. From the sugar-eluted fractions anti-glycophorin A antiserum was used to identify precursor molecules. After 5 min of labeling the first glycophorin A precursors were seen. The largest had an apparent molecular weight of 37,000, and bound to lentil lectin-Sepharose, but not to H. pomatia lectin-Sepharose. The lentil lectin-reactive glycophorin A molecules increased to Mr = 39,000 during chase and obtained sialic acids after 9 min of chase reflecting terminal N- and O-glycosylation. After 5-6 min of labeling two H. pomatia-interacting glycophorin A precursors with apparent molecular weights of 24,000 and 30,000 were obtained. These did not bind to lentil lectin-Sepharose. During chase also these molecules increased in size to Mr = 39,000. The immune precipitation of all antiglycophorin A-reactive precursor molecules was inhibited by purified red cell glycophorin A. The carboxylic ionophore, monensin, caused the accumulation of incompletely O-glycosylated glycophorin A molecules, which bound to H. pomatia lectin-Sepharose. These were degraded by treatment with endo-beta-N-acetylglucosaminidase H reflecting incomplete processing of the N-glycosidic oligosaccharide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources