Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 29;9(14):15959-15970.
doi: 10.1021/acsomega.3c09308. eCollection 2024 Apr 9.

Sol-Gel-Derived TiO2 and TiO2/Cu Nanoparticles: Synthesis, Characterization, and Antibacterial Efficacy

Affiliations

Sol-Gel-Derived TiO2 and TiO2/Cu Nanoparticles: Synthesis, Characterization, and Antibacterial Efficacy

Njabulo Sondezi et al. ACS Omega. .

Abstract

This study reports on the antibacterial efficacy of both the TiO2 and TiO2/Cu nanoparticles prepared through the sol-gel method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis. The SEM and TEM showed the spherical morphology of the nanoparticles, while EDX and XPS confirmed the incorporation of Cu into the TiO2 nanoparticles. The XRD confirmed the formation of the tetragonal anatase phase of TiO2/Cu while the FTIR revealed the functional groups linked to the doped TiO2 nanoparticles. The thermal stability of TiO2/Cu was found to be lower than pure TiO2. Moreover, TiO2 and the doped TiO2 nanoparticles were notably effective against Bacillus subtilis(B. subtilis) andEscherichia coli(E. coli); however, the addition of Cu to TiO2 did not have any effect on the antibacterial activity probably due to the lower weight content in the composites. Interestingly, the antibacterial efficiency was determined to be 90 and 80% against B. subtilis and E. coli, respectively.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
SEM images of (a) pure TiO2, (b) TiO2/Cu-1, (c) TiO2/Cu-2, and (d) TiO2/Cu-3 nanoparticles.
Figure 2
Figure 2
TEM images and size distribution curves of (a) pure TiO2, (b) TiO2/Cu-1, (c) TiO2/Cu-2, and (d) TiO2/Cu-3 nanoparticles.
Figure 3
Figure 3
EDX spectra of TiO2 and TiO2/Cu nanoparticles.
Figure 4
Figure 4
EDS mapping of (a) TiO2, (b) TiO2/Cu-1, (c) TiO2/Cu-2, and (d) TiO2/Cu-3 nanoparticles.
Figure 5
Figure 5
XPS spectra of TiO2 and Cu-doped TiO2 nanoparticles: (a) survey, (b) TiO2, (c) TiO2/Cu-1, (d) TiO2/Cu-2, and (e) TiO2/Cu-3 [Ti 2p, O 1s, Cu 2p].
Figure 6
Figure 6
XRD patterns of TiO2 and Cu-doped TiO2 nanoparticles.
Figure 7
Figure 7
Raman spectra of TiO2 and Cu-doped TiO2 nanoparticles.
Figure 8
Figure 8
FTIR spectra of TiO2 and Cu-doped TiO2 nanoparticles.
Figure 9
Figure 9
(a) TGA analysis of TiO2 and TiO2/Cu, and TGA-DTG of (b) TiO2 and (c–e) TiO2/Cu nanoparticles.
Figure 10
Figure 10
BET surface area analysis: N2 adsorption–desorption isotherm (a) TiO2 and (b-d) Cu-doped TiO2 with BJH insets.
Figure 11
Figure 11
Antibacterial activity of TiO2 and TiO2/Cu against (a) B. subtilis and (b) E. coli.

References

    1. Singh Jassal P.; Kaur D.; Prasad R.; Singh J. Green synthesis of titanium dioxide nanoparticles: Development and applications. J. Agric Food Res. 2022, 10, 100361.10.1016/j.jafr.2022.100361. - DOI
    1. Akhigbe L.; Ouki S.; Saroj D. Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column. Chem. Eng. J. 2016, 295, 92–98. 10.1016/j.cej.2016.03.020. - DOI
    1. Gautam S.; Agrawal H.; Thakur M.; Akbari A.; Sharda H.; Kaur R.; Amini M. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J. Environ. Chem. Eng. 2020, 8 (3), 103726.10.1016/j.jece.2020.103726. - DOI
    1. Padmavathi R.; Kalaivanan C.; Raja R.; Kalaiselvan S. Antioxidant and antimicrobial studies of silver nanoparticles synthesized via chemical reduction technique. Mater. Today Proc. 2022, 69, 1339–1345. 10.1016/j.matpr.2022.08.505. - DOI
    1. Yadav S.; Rani N.; Saini K. A review on transition metal oxides based nanocomposites, their synthesis techniques, different morphologies and potential applications. IOP Conf Ser. Mater. Sci. Eng. 2022, 1225 (1), 012004.10.1088/1757-899X/1225/1/012004. - DOI

LinkOut - more resources