Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;11(5):421-31.
doi: 10.1007/BF01534836.

Characterization of diphtheria-toxin-resistant mutants lacking receptor function or containing nonribosylatable elongation factor 2

Characterization of diphtheria-toxin-resistant mutants lacking receptor function or containing nonribosylatable elongation factor 2

K Kohno et al. Somat Cell Mol Genet. 1985 Sep.

Abstract

Stable mutants resistant to diphtheria toxin (DT) were isolated from Chinese hamster ovary cells (CHO-K1) by single-step mutations with various mutagens. All the mutants were classified into two major groups as reported by other workers (4-6): toxin-entry mutants (DTrI) and translational mutants (DTRII) at the level of elongation factor 2 (EF-2). These mutants were further characterized by directly measuring the specific uptake of [125I]DT and the content of nonribosylatable EF-2 by two-dimensional gel analysis. DTrI mutants, which showed no cross-resistance to Pseudomonas exotoxin A (PA), had no ability to associate with [125I]DT and contained only ADP-ribosylatable EF-2, like wild-type cells. DTRIIb mutants maintained about 50% of the normal level of cellular protein synthesis in the presence of DT, and two-dimensional gel analysis directly showed that they contained equivalent amounts of ADP-ribosylatable and nonribosylatable EF-2 molecules. Fully toxin-resistant cells, named KEE1 (DTRIIa), were isolated from a DTRIIb mutant (KE1) by two-step mutation. KEE1 cells showed full resistance to DT and PA, the normal level of association with [125I]DT, and produced only nonribosylatable EF-2. Biochemical analysis of somatic cell hybrids indicated that the DT-resistant character of class II behaved codominantly. These results strongly supported the hypothesis that two copies of the gene for EF-2 are functional in CHO-K1 cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources