Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;11(5):485-91.
doi: 10.1007/BF01534842.

Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell

Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell

A Giaccia et al. Somat Cell Mol Genet. 1985 Sep.

Abstract

A Chinese hamster cell mutant has been isolated which is extremely sensitive to killing by gamma-irradiation in the G1 and early S phases of the cell cycle (LD50 of 20 vs. 250 rads for parent), but which has nearly normal resistance in late S. The mutant cell is able to repair single-stranded DNA breaks introduced by gamma-radiation. However, in comparison to its parental cell, the mutant is deficient in the repair of double-stranded DNA breaks produced by gamma-irradiation during the sensitive G1-early S period, while in the resistant late S period, the repair is nearly the same for both cell types. This correlation between gamma-ray sensitivity and repair strongly suggests that an inability to repair double-strand DNA breaks in G1 is the basis for the hypersensitivity of the mutant to killing by gamma-rays in this phase of the cell cycle. It also provides direct evidence in mammalian cells that the ability to repair double-strand DNA breaks induced by ionizing radiation is an important biochemical function in cell survival and supports the hypothesis that unrepaired double-strand breaks are a major lethal lesion in mammalian cells. A plausible explanation for the appearance of the cell cycle phenotype of the mutant is that in normal cells there are at least two pathways for the repair of double-strand breaks, one of which functions primarily in late S phase, and the other, either throughout the cell cycle or only in the G1 and early S phases.

PubMed Disclaimer

Similar articles

Cited by

Publication types