Role of Iodine-Assisted Aerosol Particle Formation in Antarctica
- PMID: 38626432
- PMCID: PMC11064213
- DOI: 10.1021/acs.est.3c09103
Role of Iodine-Assisted Aerosol Particle Formation in Antarctica
Abstract
New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH3 clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.
Keywords: Southern Ocean; iodic acid; modeling; new particle formation; secondary aerosols.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Development and application of an aerosol screening model for size-resolved urban aerosols.Res Rep Health Eff Inst. 2014 Jun;(179):3-79. Res Rep Health Eff Inst. 2014. PMID: 25145039
-
Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics.Environ Pollut. 2017 Dec;231(Pt 2):1302-1313. doi: 10.1016/j.envpol.2017.08.103. Epub 2017 Sep 12. Environ Pollut. 2017. PMID: 28916281
-
Ion-induced sulfuric acid-ammonia nucleation drives particle formation in coastal Antarctica.Sci Adv. 2018 Nov 28;4(11):eaat9744. doi: 10.1126/sciadv.aat9744. eCollection 2018 Nov. Sci Adv. 2018. PMID: 30498779 Free PMC article.
-
Formation of droplet-mode secondary inorganic aerosol dominated the increased PM2.5 during both local and transport haze episodes in Zhengzhou, China.Chemosphere. 2021 Apr;269:128744. doi: 10.1016/j.chemosphere.2020.128744. Epub 2020 Oct 26. Chemosphere. 2021. PMID: 33131735
-
Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.J Environ Sci (China). 2015 Mar 1;29:62-70. doi: 10.1016/j.jes.2014.09.031. Epub 2015 Jan 30. J Environ Sci (China). 2015. PMID: 25766014 Review.
Cited by
-
Review of iodine behavior from nuclear fuel dissolution to environmental release.RSC Adv. 2024 Nov 8;14(48):35255-35274. doi: 10.1039/d4ra06494a. eCollection 2024 Nov 4. RSC Adv. 2024. PMID: 39524081 Free PMC article. Review.
-
Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei.Environ Sci Technol. 2024 Jun 25;58(25):10956-10968. doi: 10.1021/acs.est.4c01891. Epub 2024 Jun 13. Environ Sci Technol. 2024. PMID: 38868859 Free PMC article.
References
-
- Boucher O.; Randall D.; Artaxo P.; Bretherton C.; Feingold G.; Forster P.; Kerminen V.; Kondo Y.; Liao H.; Lohmann U.; Rasch P.; Satheesh S.; Sherwood S.; Stevens B.; Zhang X.; Qin D.; Plattner G.; Tignor M.; Allen S.; Boschung J.; Nauels A.; Xia Y.; Bex V.; Midgley P.; Boucher O.; Randall D.. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Qin D., Plattner G., Tignor M., Allen S., Boschung J., Nauels A., Xia Y., Bex V., Midgley P., Eds.; Cambridge University Press, 2013.
-
- Giordano M. R.; Kalnajs L. E.; Avery A.; Goetz J. D.; Davis S. M.; DeCarlo P. F. A Missing Source of Aerosols in Antarctica-beyond Long-Range Transport, Phytoplankton, and Photochemistry. Atmos. Chem. Phys. 2017, 17 (1), 1–20. 10.5194/acp-17-1-2017. - DOI
-
- Brean J.; Dall’Osto M.; Simó R.; Shi Z.; Beddows D. C. S.; Harrison R. M. Open Ocean and Coastal New Particle Formation from Sulfuric Acid and Amines around the Antarctic Peninsula. Nat. Geosci 2021, 14 (6), 383–388. 10.1038/s41561-021-00751-y. - DOI
-
- Schmale J.; Zieger P.; Ekman A. M. L. Aerosols in Current and Future Arctic Climate. Nat. Clim Chang 2021, 11 (2), 95–105. 10.1038/s41558-020-00969-5. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources