Transcriptomics Curation of SARS-CoV-2 Related Host Genes in Mice With COVID-19 Comorbidity: A Pilot Study
- PMID: 38630104
- PMCID: PMC8529699
- DOI: 10.1097/IM9.0000000000000025
Transcriptomics Curation of SARS-CoV-2 Related Host Genes in Mice With COVID-19 Comorbidity: A Pilot Study
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), a respiratory disease caused by a novel severe acute respiratory syndrome coronavirus-2, is causing substantial morbidity and mortality. Along with the respiratory symptoms, underlying diseases in senior patients, such as diabetes, hypertension, and coronary heart disease, are the most common comorbidities, which cause more severe outcomes and even death. During cellular attachment and entry of severe acute respiratory syndrome coronavirus-2, the key protein involved is the angiotensin I converting enzyme 2 (ACE2), which is located on the membrane of host cells. Here, we aim to curate an expression profile of Ace2 and other COVID-19 related genes across the available diabetes murine strains. Based on strictly manual curation and bioinformatics analysis of the publicly deposited expression datasets, Ace2 and other potentially involved genes such as Furin, Tmprss2, Ang, and Ang2 were examined. We found that Ace2 expression is rather ubiquitous in three selected diabetes prone strains (db/db, ob/ob and diet-induced obese). With the most abundant datasets present, the liver shows a medium Ace2 expression level compared with the lungs, pancreatic islets, brain and even T cells. Age is a more critical factor for Ace2 expression in db/db compared with the other two strains. Besides Ace2, the other four host genes showed varied levels of correlation to each other. To accelerate research on the interaction between COVID-19 and underlying diseases, the Murine4Covid transcriptomics database (www.geneureka.org/Murine4Covid) will facilitate the design of research on COVID-19 and comorbidities.
Keywords: ACE2; COVID-19; SARS-CoV-2; diabetes; murine model.
Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc.
Figures




Similar articles
-
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28. J Virol. 2022. PMID: 35343766 Free PMC article.
-
Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19.J Med Virol. 2020 Jul;92(7):726-730. doi: 10.1002/jmv.25785. Epub 2020 Apr 5. J Med Virol. 2020. PMID: 32221983 Free PMC article. Review.
-
Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach.Bioinform Biol Insights. 2021 Oct 26;15:11779322211054684. doi: 10.1177/11779322211054684. eCollection 2021. Bioinform Biol Insights. 2021. PMID: 34720581 Free PMC article.
-
Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart.Cardiovasc Res. 2020 Aug 1;116(10):1733-1741. doi: 10.1093/cvr/cvaa191. Cardiovasc Res. 2020. PMID: 32638018 Free PMC article.
-
Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications.Hypertension. 2020 Nov;76(5):1339-1349. doi: 10.1161/HYPERTENSIONAHA.120.15256. Epub 2020 Aug 27. Hypertension. 2020. PMID: 32851855 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Miscellaneous